• Title/Summary/Keyword: MEA Degradation

Search Result 56, Processing Time 0.022 seconds

A Photocatalytic Degradation of Synthetic Detergent over $TiO_2$ Catalysts Prepared by Sol-Gel Method (졸-겔법으로 제조된 $TiO_2$촉매에 의한 합성세제의 광분해)

  • 양천회;홍필선
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • An aqueous solution of a commercial liquid synthetic detergent for kitchen use was photodecomposed in the presence of titanium dioxides ponder under an atmosphere of air at room temperature. Titanium dioxides were prepared by sol-gel method from titanium iso-propoxide at different R R ratio($H_2O$/titanium iso-propoxide) and calcined at $500^{\circ}C$. All titanium dioxides m characterized by XRD, BET surface area analyzer and UV-VIS spectrometer. The surface mea of titanium dioxides prepared at R ratio=6 appeared higher volume about 20% than commercial $TiO_2$ catalyses. XRD patterns of titania particles were observed mixing phase together with rutile and anatase type. Titanium dioxides prepared by sol-gel method show higher activity about 6% than commercial $TiO_2$ catalysts on the Photocatalytic foundation of a commercial liquid synthetic detergent for kitchen. The concentration of the detergent decreased to about 90%, of its initial value at illumination times of 2 hour. illumination for 30 minutes decreased the concentration of oxygen to about one-fifth of the initial value.

  • PDF

Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test

  • Hwang, Byung Chan;Oh, So Hyeong;Lee, Moo Seok;Lee, Dong Hoon;Park, Kwon Pil
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2290-2295
    • /
    • 2018
  • An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and $90^{\circ}C$). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.

Efficiency Improvement Research in Proton Exchange Membrane Fuel Cell (고분자전해질형 연료전지의 효율향상에 대한 연구)

  • Jang, Haer-Yong;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.149-154
    • /
    • 2005
  • Fuel cell performance evaluation logic was developed using G-language (LabVIEW) to measure performance stability. Degree of stability and reliability of performance data were improved with averaged value and standard deviation method. Water injection system was introduced and the performance using this method was comparable to that of conventional humidification method. Water injection system has advantage of lowering operation energy consumption, reducing the number of parts needed in humidification, therefore increasing efficiency of fuel cell system. Fuel cell performance was decreased in case of low temperature operation such as sub freezing condition. Air purge method was tested to reduce the water content in cell fixture before sub freezing condition. The performance degradation due to low temperature operation was minimized by air purge method in medium size cell fixture ($25cm^2$) case.

Isolation and Characterization of Airborne Mushroom Damaging Trichoderma spp. from Indoor Air of Cultivation Houses Used for Oak Wood Mushroom Production Using Sawdust Media

  • Kim, Jun Young;Kwon, Hyuk Woo;Lee, Dong Hyeung;Ko, Han Kyu;Kim, Seong Hwan
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.674-683
    • /
    • 2019
  • Some species of the Trichoderma genus are reported as the major problem in oak wood mushroom production in Korea. In spite of economic loss by the fungi, scientific information on airborne Trichoderma species is not much available. To generate information for disease management development we analyzed airborne Trichoderma. A total of 1,063 fungal isolates were purely obtained from indoor air sampling of cultivation houses used for oak wood mushroom using sawdust media. Among the obtained isolates, 248 isolates were identified as Trichoderma fungi including T. harzianum, T. atroviride, T. citrinoviride, and T. pseudokoningii, by morphological and molecular analysis. T. harzianum was dominant among the four identified species. All the four Trichoderma species grew fast on solid nutrient media tested (potato dextrose agar [PDA], malt extract agar [MEA], Czapek's Dox + yeast extract agar [CYA] and cornmeal dextrose agar). Compact mycelia growth and mass spore production were better on PDA and CYA. In addition, T. harzianum and T. citrinoviride formed greenish and yellowish mycelium and spores on PDA and CYA. Greenish and yellowish pigment was saturated into PDA only by T. pseudokoningii. These four Trichoderma species could produce extracellular enzymes of sawdust substrate degradation such as β-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease. Their mycelia inhibited the growth of oak wood mushroom mycelia of two tested cultivars on dual culture assay. Among of eleven antifungal agents tested, benomyl was the best to inhibit the growth of the four Trichoderma species. Our results demonstrate that the airborne Trichoderma fungi need to be properly managed in the cultivation houses for safe mushroom production.

Increased Chemical Durability by Annealing of SPEEK Membrane for Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지용 SPEEK 막의 어닐링에 의한 화학적 내구성 향상)

  • MI-HWA LEE;DONGGEUN YOO;HYE-RI LEE;IL-CHAI NA;KWONPIL PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.673-681
    • /
    • 2023
  • Hydrocarbon-based polymer membranes to replace perfluorinated polymer membranes are being continuously researched. However, hydrocarbon-based membranes have a problem in that they are less durable than fluorine-based membranes. In this study, we sought to compare the annealing effect to improve the durability of sulfonated poly(ether ether ketone) (SPEEK). After membranes formation, thermogravimetric analysis and tensile strength were measured to compare changes in membranes properties due to annealing. After manufacturing the membrane and electrode assembly (MEA), the initial performance and chemical durability was compared with unit cell operation. During the 24-hour annealing process, the strength increased due to the increase in-S-O-S-crosslinking, and the sulfonic acid group decreased, leading to a decrease in I-V performance. By annealing, the hydrogen permeability was reduced to less than 1/10 of that of the nafion membrane, and as a result, open circuit voltage (OCV) and durability was improved. The SPEEK membranes annealed for 24 hours showed higher durability than the nafion 211 membranes of the same thickness.

A Study for Perception of Hair Damage Using Friction Coefficient of Human Hair (모발의 마찰계수를 통한 모발 손상 인식 연구)

  • Lim, Byung Tack;Seo, Hong An;Song, Sang-Hun;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.295-305
    • /
    • 2020
  • Treatment for beauty using oxidizing agents damages hair with inducing structural alteration in cuticle layer, degradation of protein, and loss of lipid. This study connects a frictional coefficient upon the damaged hair by an instrumental test to the texture test by human being, and considered a moisture as a factor of the damage. A friction coefficient has been measured upon the hair with successive treatment of dye, perm, and bleach. The friction coefficient from the hair dye-treated three times was defined with 0.60, where 58% of answerer indicated an initial damage point as the hairs of iteration of dye-treatment increased. Even bleach treated three times results in 0.84 of friction coefficient corresponding to 88% of answerer attributed the hair to an initially damaged hair. In order to figure out a lipid loss in hair for human being to respond damage, a friction coefficient of the hair was controlled by removing 18-methyleicosanoic acid (18-MEA). The initial damage has been recognized by 0.60 of the friction coefficient for the 68% of answerer. Since moisture is the largest portion of the components in hair, moisture analysis has been performed to study a relationship between texture of damage and the friction coefficient from an instrumental evaluation. As an iteration of dye increases, the hair became hydrophilic with smaller contact angle. It is found that a damaged hair by dyeing possessed more than 0.42% of moisture compared to a healthy hair. Finally, it is elucidated that an increase of moisture in hair induced higher adhesive force corresponding to the friction coefficient, and the friction coefficient above 0.6 is attributed to the preception of hair damage.