• Title/Summary/Keyword: MDR reversal

Search Result 36, Processing Time 0.025 seconds

Reversal of Multidrug Resistance by Benzotriazepin Analogues in Cancer Cells (Benzotriazepin 유도체의 암세포에 대한 다약제내성 억제효과)

  • Kim Mi Hye;Choi Sang Un;Choi Eun Jung;Kim Sung Soo;Choi Jung Kwon;Ahn Jin Hee;Lee Chong Ock;Kwon Kwang Il
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.38-43
    • /
    • 2005
  • The occurrence of resistance to chemotherapeutic drugs is a major problem for successful cancer treatment. This resistant phenotype of cancer cell frequently reveals a broad spectrum to structurally and/or functionally unrelated anticancer drugs, termed multidrug resistance (MDR). Overexpression of P-glycoprotein (P-gp), a transmembrane drug efflux pump, is a major mechanism of MDR. Accordingly, considerable effort has been directed towards to development of compounds that inhibit P-gp, reverse the MDR phenotype and sensitize cancer cells to conventional chemotherapy without undesired toxicological effects. In an effort to search for novel MDR reversal agent, we tested the cytotoxicity of paclitaxel, a well-known substrate of P-gp, against P-gp-expressing HCT15 and HCT15/CL02 human colorectal cancer cells in the presence or absence of benzotriazepin analogues, as well as against P-gp-negative A549 human non-small cell lung and SK-OV-3 human ovarian cancer cells in vitro. Among the compounds tested, the agents that have phenyl amide moiety at 3 position remarkably increased the cytotoxicity of paclitaxel against P-gp-expressing cancer cells, but not against P-gp-negative cancer cells. BTZ-15 and BTZ-16 at $4\;{\mu}M$ revealed similar MDR reversal activity to $10\;{\mu}M$ verapamil, a well-known MDR reversal agent.

Combination of Curcumin and Paclitaxel-loaded Solid Lipid Nanoparticles to Overcome Multidrug Resistance

  • Li, Rihua;Xu, Wenting;Eun, Jae-Soon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.381-386
    • /
    • 2011
  • Multi-drug resistance (MDR) has been known as a major hurdle in cancer chemotherapy. One of the most clinically significant causes of MDR was the efflux of anticancer agents mediated by p-glycoprotein (p-gp) over-expressed in MDR cancer cells. To overcome MDR, there have been several strategies such as co-administration with p-gp inhibitors and encapsulation of anticancer drugs into drug delivery systems. In the present study, curcumin was evaluated for its potential as p-gp inhibitor and MDR reversal activity when combined with paclitaxel incorporated into lipid nanoparticles (PTX/LN). Western blot assay showed curcumin did not modulate the level of p-gp expression in MCF-7/ADR which is a MDR variant of human breast cancer cell line, MCF-7, and over-expresses p-gp. However, curcumin inhibited p-gp-mediated efflux of calcein in a dose-dependent manner even though it showed lower activity compared to verapamil, a well-known p-gp inhibitor. Incorporation of paclitaxel into lipid nanoparticles partially recovered the anticancer activity of paclitaxel in MCF-7/ADR. The combined use of curcumin and PTX/LN exhibited further full reversal of MDR, suggesting susceptibility of PTX/LN to the efflux system. In conclusion, combined approach of using p-gp inhibitors and incorporation of the anticancer agents into nano-delivery systems would be an efficient strategy to overcome MDR.

Aporphine Alkaloids and their Reversal Activity of Multidrug Resistance (MDR) from the Stems and Rhizomes of Sinomenium acutum

  • Min, Yong-Deuk;Choi, Sang-Un;Lee, Kang-Ro
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.627-632
    • /
    • 2006
  • Chromatographic separation of the MeOH extract from the stems and rhizomes of Sinomemium acutum led to the isolation of nine alkaloids and a lignan. Their structures were determined to be dauriporphine (1), bianfugecine (2), dauriporphinoline (3), menisporphine (4), (-)-syringaresinol (5), N-feruloyltyramine (6), acutumine (7), dauricumine (8), sinomenine (9), and magnoflorine (10) by spectroscopic means. These compounds were examined for their P-gp mediated MDR reversal activity in human cancer cells. Compound 1 showed the most potent P-gp MDR inhibition activity with an $ED_{50}$ value $0.03\;{\mu}g/mL$ and $0.00010\;{\mu}g/mL$ in the MESSA/DX5 and HCT15 cells, respectively.

Synthesis and Biological Evaluation of Decursin, Prantschimgin and Their Derivatives

  • Xia, Yan;Min, Kyung-Hoon;Lee, Kyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The synthesis of coumarin-based natural products and their derivatives is described. In vitro MDR reversal activities of the synthesized compounds were evaluated in P-glycoprotein over-expressing human sarcoma cell line MES-SA/DX5. Some of the coumarin derivatives were found to show potent MDR reversal activity. In particular, pyridyl derivative (15e) exhibited more potency than verapamil.

Synthesis and Biological Evaluation of Phenoxy-N-phenylacetamide Derivatives as Novel P-glycoprotein Inhibitors

  • Lee, Kyeong;Roh, Sang-Hee;Xia, Yan;Kang, Keon-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3666-3674
    • /
    • 2011
  • Overexpression of P-glycoprotein (Pgp) is associated with multidrug resistance (MDR) of tumor cells to a number of chemotherapeutic drugs. Pgp inhibitors have been shown to effectively reverse Pgp-mediated MDR. We prepared a series of phenoxy-N-phenylacetamide derivatives and tested for their ability to inhibit Pgp as potential MDR reversing agents, using a Pgp over-expressing MCF-7/ADR cell line. Some of the synthesized compounds exhibited moderate to potent reversal activity. Of note, compound 4o showed a 3.0-fold increased inhibition compared with verapamil, a well-known Pgp inhibitor. In addition, co-treatment of the representative compound 4o and a substrate anticancer agent doxorubicin resulted in a remarkable increase in doxorubicin's antitumor effect and inhibition of DNA synthesis in the MCF-7/ADR cell line. Taken together, these findings suggest that compound 4o could be a useful lead for development of a novel Pgp inhibitor for treatment of MDR.

Multidrug Resistance Reversal Activity of Methanol Extracts from Basidiomycete Mushrooms in Cancer Cells

  • Choi, Chun Whan;Yoon, Joo-Won;Yon, Gyu Hwan;Kim, Young Sup;Ryu, Shi Yong;Seok, Soon-Ja;Kang, Sunny;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.239-243
    • /
    • 2012
  • Mushrooms have a long history of use in traditional medicine, and hundreds of novel constituents in mushrooms with miraculous biological properties have been identified recently. Although diverse effects for medicinal use of mushrooms such as anticancer activity are proven, their reversal activities of drug resistance in cancer cells was rarely reported so far. In the search for novel medicinal use of mushrooms, we tested the multidrug resistance (MDR) reversal activities of diverse mushrooms collected from Korea. Among, the mushroom extracts tested, Cantharellus cibarius (M02) and Russula emetica (M12) revealed MDR reversal activities of paclitaxel in the P-glycoprotein (Pgp)-positive HCT15 and MES-SA/dX5 cancer cells, but not in the Pgp-negative A549 and MES-SA cancer cells. In addition, these mushrooms also enhanced the cytotoxicity of doxorubicin, another well-kwown Pgp-associated anticancer drug against MES-SA/DX5 cells, but not against MES-SA cells. Meanwhile, the cytotoxicity of cisplatin, a well-known Pgp-non-associated anticancer drug, was not affected by the mushrooms all the cells tested. From these results, we suspected that some ingredients of M02 and M12 have Pgp-associated MDR reversal activities.

Knockdown of MDR1 Increases the Sensitivity to Adriamycin in Drug Resistant Gastric Cancer Cells

  • Zhu, Chun-Yu;Lv, Yan-Ping;Yan, Deng-Feng;Gao, Fu-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6757-6760
    • /
    • 2013
  • Gastric cancer is one of the most frequently occurring malignancies in the world. Development of multiple drug resistance (MDR) to chemotherapy is known as the major cause of treatment failure for gastric cancer. Multiple drug resistance 1/P-glycoprotein (MDR1/p-gp) contributes to drug resistance via ATP-dependent drug efflux pumps and is overexpressed in many solid tumors including gastric cancer. To investigate the role of MDR1 knockdown on drug resistance reversal, we knocked down MDR1 expression using shRNA in drug resistant gastric cancer cells and examined the consequences with regard to adriamycin (ADR) accumulation and drug-sensitivity. Two shRNAs efficiently inhibited mRNA and protein expression of MDR1 in SGC7901-MDR1 cells. MDR1 knockdown obviously decreased the ADR accumulation in cells and increased the sensitivity to ADR treatment. Together, our results revealed a crucial role of MDR1 in drug resistance and confirmed that MDR1 knockdown could reverse this phenotype in gastric cancer cells.

Targeting Multidrug Resistance with Small Molecules for Cancer Therapy

  • Xia, Yan;Lee, Kyeong
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.375-385
    • /
    • 2010
  • Conventional cancer chemotherapy is seriously limited by tumor cells exhibiting multidrug resistance (MDR), which is caused by changes in the levels or activity of membrane transporters that mediate energy-dependent drug efflux and of proteins that affect drug metabolism and/or drug action. Cancer scientists and oncologists have worked together for some time to understand anticancer drug resistance and develop pharmacological strategies to overcome such resistance. Much focus has been on the reversal of the MDR phenotype by inhibition of ATP-binding cassette (ABC) drug transporters. ABC transporters are a family of transporter proteins that mediate drug resistance and low drug bioavailability by pumping various drugs out of cells at the expense of ATP hydrolysis. Many inhibitors of MDR transporters have been identified, and though some are currently undergoing clinical trials, none are in clinical use. Herein, we briefly review the status of MDR in human cancer, explore the pathways of MDR in chemotherapy, and outline recent advances in the design and development of MDR modulators.

Multidrug resistance reversal in mouse lymphoma cells by indian tea leaves, indian coffee seeds and chicory

  • Rao, Bhattiproulu Kesava;Motohashi, Noboru;Kawase, Masami;Spengler, Gabriella;Molnar, Joseph
    • Advances in Traditional Medicine
    • /
    • v.3 no.2
    • /
    • pp.100-105
    • /
    • 2003
  • Systematic analysis of caffeine from the commercial samples of Indian tea leaves was performed by a routine method and the content of caffeine was found to be 19.0-37.4 mg/100 g leaves. The caffeine contents from coffee seeds and chicory from Indian origin were analyzed and found to be 0.6540-1.4920 g/100 g seeds. Caffeine contents of roasted Indian chicory roots were lower than either those of Indian tea leaves or Indian coffee seeds. The multidrug resistance (MDR) reversing effects were tested on a mouse leukemia cell line of L-5178 cells by methanol extracts [M1-M15] of Indian tea leaves and coffee seeds, comparing to a control of $({\pm})-verapamil$. The effects were measured by fluorescence ratio between treated and untreated group cells. Among fifteen methanol extracts, a Gemini tea [M6] (fluorescence activity ratio 5.26) had the most potent effect for L-5178 cells. The extract M6 was 0.63-fold of $({\pm})-verapamil$. We suggest that one of mechanisms of reversal by M6 might have strong affinity to dopamine $D_1$ and D_2$ receptors. Further studies with many more tumor and normal cell lines are necessary to confirm the MDR reversal specificity of coffee methanol extracts.