• Title/Summary/Keyword: MDF

Search Result 251, Processing Time 0.027 seconds

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

Text Mining of Wood Science Research Published in Korean and Japanese Journals

  • Eun-Suk JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.458-469
    • /
    • 2023
  • Text mining techniques provide valuable insights into research information across various fields. In this study, text mining was used to identify research trends in wood science from 2012 to 2022, with a focus on representative journals published in Korea and Japan. Abstracts from Journal of the Korean Wood Science and Technology (JKWST, 785 articles) and Journal of Wood Science (JWS, 812 articles) obtained from the SCOPUS database were analyzed in terms of the word frequency (specifically, term frequency-inverse document frequency) and co-occurrence network analysis. Both journals showed a significant occurrence of words related to the physical and mechanical properties of wood. Furthermore, words related to wood species native to each country and their respective timber industries frequently appeared in both journals. CLT was a common keyword in engineering wood materials in Korea and Japan. In addition, the keywords "MDF," "MUF," and "GFRP" were ranked in the top 50 in Korea. Research on wood anatomy was inferred to be more active in Japan than in Korea. Co-occurrence network analysis showed that words related to the physical and structural characteristics of wood were organically related to wood materials.

Microstructure Generation and Linearly Elastic Characteristic Analysis of Hierarchical Models for Dual-Phase Composite Materials (이종 입자복합재의 미세구조 생성과 계층적 모델의 선형 탄성적 응답특성 해석)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.133-140
    • /
    • 2018
  • This paper is concerned with the 2-D micostructure generation for $Ni-A{\ell}_2O_3$ dual-phase composite materials and the numerical analysis of mechanical characteristic of hierarchical models of microstructure which are defined in terms of the scale of microstructure. The microstructures of dual-phase composite materials were generated by applying the mathematical RMDF(random morphology description functions) technique to a 2-D RVE of composite materials. And, the hierarchical models of microstructure were defined by the number of Gaussian points. Meanwhile, the volume fractions of metal and ceramic particles were set by adjusting the level of RMD functions. The microstructures which were generated by RMDF technique are definitely random even though the total number of Gaussian points is the same. The randomly generated microstructures were applied to a 2-D beam model, and the variation of normal and shear stresses to the scale of microstructure was numerically investigated. In addition, through the crack analyses, the influence of RMDF randomness and Gauss point number on the crack-tip stress is investigated.

Quantification of Carbon Reduction Effects of Domestic Wood Products for Valuation of Public Benefit

  • Chang, Yoon-Seong;Kim, Sejong;Kim, Kwang-Mo;Yeo, Hwanmyeong;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.202-210
    • /
    • 2018
  • This study was carried out to quantify degree of contribution of harvested wood product (HWP) on mitigation of climate change by valuation of public benefits, environmentally and economically. The potential carbon dioxide emission reduction of HWP was estimated by accounting carbon storage effect and substitution effect. Based on 2014 statistics of Korea Forest Service, domestic HWPs were sorted by two categories, such as wood products produced domestically from domestic and imported roundwood. The wood products were divided into seven items; sawnwood, plywood, particle board, fiberboard (MDF), paper (including pulp), biomass (wood pellet) and other products. The carbon stock of wood products and substitution effects during manufacturing process was evaluated by items. Based on the relevant carbon emission factor and life cycle analysis, the amount of carbon dioxide emission per unit volume on HWP was quantified. The amounts of carbon stock of HWP produced from domestic and from imported roundwood were 3.8 million $tCO_{2eq}$., and 2.6 million $tCO_{2eq}$., respectively. Also, each reduction of carbon emission by substitution effect of HWP produced from domestic and imported roundwood was 3.1 million $tCO_{2eq}$. and 2.1 million $tCO_{2eq}$., respectively. The results of this study, the amount of carbon emission reduction of HWP, can be effectively used as a basic data for promotion of wood utilization to revise and establish new wood utilization promotion policy such as 'forest carbon offset scheme', and 'carbon storage labeling system of HWP'.

Outlook of Wood Products Markets with Supply and Demand Model (수급모형을 이용한 목제품 시장 전망)

  • Lee, Sang-Min;Kim, Kyeong-Duk;Song, Seong-Hwan;Bark, Ji-Eun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.462-472
    • /
    • 2014
  • This study is aimed at developing a supply-demand model of wood products, and outlook for mid-term and long-term supply and demand for each products. The main wood products include sawnwood, plywood, particle board, fiberboard (MDF), and pulp. The partial equilibrium model is composed of supply function, import demand function, demand function, price relation function. With given parameters the outlook for year 2050 says that sawnwood, plywood, and fiberboard for domestic productions and imports are decreased. This may result from the increase of log prices from the inside and outside of the country because of the propensity for environment protection and the resource nationalism. On the other hand the supply of particle board and pulp will increase because they are made from wasted wood and chips.

Study on the Characteristics of Formaldehyde Emission from Wood-Based Panels Treated with Several Surface Finishing Materials (표면마감처리에 따른 목질보드의 포름알데히드 방산특성에 관한 연구)

  • So, Won-Tek;Lim, Jin-Ah
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.30-37
    • /
    • 2006
  • The present study examined the formaldehyde (HCOH) emission characteristic of various wood-based panel used in interior design, and measured changes in formaldehyde emission when a number of VOC reduction methods were applied. Formaldehyde emission showed a clear tendency of increase with the rise of temperature, and the concentration of formaldehyde emitted changed according to the preprocessing condition before measuring. Formaldehyde emission from wood board after bake out treatment was lower than that of the control group. When specimens were coated with urethane, cashew, water, oil stain, they generally showed the decrease of formaldehyde emission, although varying according to finishing material, and when edge sealing was applied the decrease became significant. $TiO_2$ coating was more effective in decreasing formaldehyde under ultraviolet lamps than under ordinary lamps. When the irradiation of ultraviolet lamps gets longer, formaldehyde emission decreased.

Preparation of Lignocellulose Nanofiber by Mechanical Defibrillation After Pretreatment Using Cosolvent of Ionic Liquid and DMF (이온성 액체/DMF 혼합용매 전처리 후 기계적 해섬을 통한 리그노셀룰로오스 나노섬유의 제조)

  • Han, Song-Yi;Park, Chan-Woo;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.268-277
    • /
    • 2017
  • In this study, lignocellulose nanofibrils (LCNFs) were prepared from Pussy willow wood powder by disk-milling after pretreatment using the cosolvent of 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) and N,N-dimethylformamide (DMF) with different mixing ratios for different time. All pretreated samples showed native cellulose I polymorph and cellulose crystallinity was lowest when cosolvent of DMF with 30% [EMIM]Ac was used. Average crystallite size of raw material and the pretreated product by MDF and its cosolvent with 10% [EMIM]Ac was found to be about 3.2 nm and decreased with increasing pretreatment time at the DMF cosolvent with 30% [EMIM]Ac. Defibrillation efficiency was improved by loosening wood cell wall structure by the pretreatment using co-solvent system of [EMIM]Ac and DMF.

Performance Analysis of a Combination of Carry-in and Remarshalling Algorithms

  • PARK, Young-Kyu;UM, Kyung-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.10
    • /
    • pp.75-89
    • /
    • 2020
  • Purpose: The container terminal is an area that plays an important role in the country's import and export. As the volume of containers increased worldwide, competition between terminals became fiercer, and increasing the productivity of terminals became more important. Re-handling is a serious obstacle that lowers the productivity of terminal. There are two ways to reduce re-handling in the terminal yard. The first method is to load containers in terminal yards using effective carry-in algorithms that reduce re-handling. The second method is to carry out effective remarshalling. In this paper, the performance of various carry-in algorithms and various remarshalling algorithms are reviewed. Next, we try to find the most effective combination of carry-in algorithm and remarshalling algorithm. Research design, data and methodology: In this paper, we analyze the performance of the four carry-in algorithms, AP, MDF, LVF, RP and the four remarshalling algorithms, ASI, ASI+, ASO, ASO+. And after making all the combinations of carry-in algorithms and remarshalling algorithms, we compare their performance to find the best combination. To that end, many experiments are conducted with eight types of 100 bays through simulation. Results: The results of experiments showed that AP was effective among the carry-in algorithms and ASO+ was effective among remarshalling algorithms. In the case of the LVF algorithm, the effect of carrying in was bad, but it was found to be effective in finding remarshalling solution. And we could see that ASI+ and ASO+, algorithms that carry out remarshalling even if they fail to find remarshalling solution, are also more effective than ASI and ASO. And among the combinations of carry-in algorithms and remarshalling algorithms, we could see that the combination of AP algorithm and ASO+ algorithm was the most effective combination. Conclusion: We compared the performance of the carry-in algorithms and the remarshalling algorithms and the performance of their combination. Since the performance of the container yard has a significant effect on the performance of the entire container terminal, it is believed that the results of this experiment will be effective in improving the performance of the container terminal when carrying-in or when remarshalling.

Effect of Carbonization Temperature on the Surface Temperature of Carbonized Board (탄화온도가 탄화보드의 표면온도에 미치는 영향)

  • Oh, Seung-Won;Hwang, Jung-Woo;Park, Sang Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.60-66
    • /
    • 2018
  • For new use development of carbonized board, we investigated the effect of carbonization temperature on the surface temperature of carbonized board manufactured from a plywood, particle board, MDF, and wood of Fraxinus rhynchophylla at different carbonization temperature ($400^{\circ}C{\sim}1100^{\circ}C$). The surface temperature of carbonized board precipitously increased until 12 minutes elapsed, after smoothly increased and thereafter which were stable after 20 minutes. The higher carbonization temperature increased density of carbonized board and surface temperature of carbonized board so that density is considered to influence surface temperature change. Moreover, carbonized boards kept heat for a long time because the descent velocity of carbonized boards' surface temperature was slower than that of heater's.

Analysis of environmental benefit of wood waste recycling processes (폐목재 자원화 방법 환경편익 분석)

  • Kim, Mi Hyung;Hong, Soo Youl;Phae, Chae Gun;Koo, Ja Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.15-19
    • /
    • 2012
  • Wood wastes could be renewable resources by recycling as particleboard manufacturing or energy production. Particle board is the most common item of wood waste recycling and energy production from wood wastes has highlighted for energy recovery to reduce greenhouse gas generation in recent years. The aim of this study was to evaluate the environmental benefits of the processes for particle board manufacturing and energy production. The functional unit was one ton of wood wastes and the environmental impact was analyzed by life cycle assessment methodology. The result was that 112kg of carbon dioxide equivalent was produced from particle board manufacturing process and 382kg of carbon dioxide equivalent was produced from combined heat and power generation process. The concept of temporary biomass carbon storage was to applied to this study.