• Title/Summary/Keyword: MDCT 영상처리

Search Result 14, Processing Time 0.03 seconds

A Study on an Image Processing for Segmentation of Liver Arteriography Using Medical Image(MDCT) (의료명상(MDCT)을 이용한 간 동맥의 영역 분할에 관한 영상처리)

  • Choi Seung-Kwon;Cho Yong-Hwan;Lee Byong-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.305-305
    • /
    • 2005
  • In modern society, diseases are variously found. Also, disease can be fatal once starting attack or one misses the proper medical examination time. According to the development of society, our liver settled on exhausted status which causes high disease development ratio because of excess business, smoking and drinking. Especially liver related disease cannot be recovered, therefore it depends on internal organ transplant surgery. In this paper, calculate volume from rendered liver shape using 3-dimensional image processing method and we develop an image processing method for the image acquired by MDCT, that can simulate incision line decision according to blood vessel segmentation that can be used on liver transplant operation. Simulation results which adopt automatic liver segment abstraction algorithm show that it can help surgical operation.

Segmentation of Liver on MDCT Image (MDCT 영상에서 간의 추출)

  • Seo Jeongjoo;Ryu Gangmin;Fei Yang;Park Jongwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.802-804
    • /
    • 2005
  • 제안된 연구에서는 기존의 일반 CT(Computerized tomography) 영상이 아닌 MDCT(Multi Detector CT) 영상을 이용하여 장기 추출에 관한 연구를 진행하였다. 조영제를 이용한 복부 MDCT 영상으로부터 모폴로지(morphology) 기법을 통해 간에 근접한 노이즈를 제거하고, 기존의 Otsu threshold를 개선하여 간의 명암값 분포를 구분할 수 있는 임계치를 구하였다. 찾아진 임계치를 이용하여 영상을 이진화하고, 최종적으로 위치정보를 이용하여 간에 해당하는 부분들을 추출하였다. 이러한 방식은 명암값과 위치정보를 이용하여 간을 추출한 후 다시 노이즈 문제를 해결하는 기존의 알고리즘과 비교했을 때, 처리 방식이 단순해지고 속도가 향상되었다. 추출된 간은 간 이식술이나 절제술에 필요한 간 내부의 혈관 인식과 간의 부분체적 계산 연구에 중요한 정보로 사용될 수 있을 것이다.

  • PDF

Phased Segmentation of Human Organs On the MDCT Scans (흉부 MDCT 영상을 이용한 신체 장기의 단계별 분할)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1383-1391
    • /
    • 2011
  • Following the appearance of the latest medical equipment with improved function, the importance of image analysis which enables effective image processing and analysis consistent with the hardware performance is on the rise. As well as, ongoing study is being done on the 2D medical image processing and 3D reconstruction. This paper segments chest CT images into each stage and finally shows 3D reconstruction of each segmented result. Among various image segmentation methods, Region Growing and apply sharpening and Gamma Controller as for image improvement for effective segmentation, image segmentation in order of bronchus and lung, bronchus, lung. Human organs image of segmented is use VTK(Visualization Toolkit) to make 3D reconstruction, two and three-dimensional medical image processing and analysis for lesions diagnosis are able to utilized.

MDCT Angiography of the Subclavian Artery Thrombosis of the 3D Findings (쇄골하동맥 혈전증에서의 MDCT 혈관조영술의 3D 영상)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.813-819
    • /
    • 2018
  • To demonstrate the 3D usefulness of MDCT, a 73-year-old male patient with subclavian thrombosis was obtained 3D images of maximum intensity projection (MIP), volume rendering, and multiplanar reformation (MPR) to clearly detect and locate the subclavian artery. The data will be provided to the patient for diagnosis and treatment. The scan data were acquired as 3D CT images MIP, volume rendering, curved MPR, and virtual endoscopy images. In the 3D program, the ascending aorta was measured as 364.28 HU, the left carotid artery was 413.77 HU, and the left subclavian artery was 15.72 HU. MIP coronal image shows the closure of the subclavian artery in the left side. Three-dimensional volume images were obtained with 100% permeability and 87-1265 HU. The coronal curved MPR and sagittal curved MPR images show the closure of the subclavian artery due to thrombus using 3D image processing. In the case of subclavian arterial occlusion due to thrombosis, the patient is scanned with MDCT and 3D image processing can be used to confirm occlusion of subclavian artery.

3D Image Analysis of Liver and Blood Vessels using MDCT (MDCT를 이용한 간과 혈관의 3D 영상분석)

  • Yang, Fei;Park, Jong Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.155-156
    • /
    • 2009
  • In this paper we present 3D image analysis of liver and blood vessels using MDCT. The purpose is to enhance the performance of clinician in assessing anatomical information of liver and blood vessels. The system consists of two parts: 3D image reconstruction and analysis of the 3D liver and blood vessel image. The central vein of the liver is the most important blood vessel for the liver transplantation. We will find the central vein's location and characteristic, and will scheme out a computer assistant liver transplantation planning. It will be an effective tool for interventional radiology, surgical planning, and quantitative diagnosis.

Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image Using Morphological Filtering (Morphological Filtering을 이용한 복부 MDCT 영상의 간혈관 자동 추출 알고리즘)

  • Park, Chun-Ja;Ryu, Gang-Min;Park, Jong-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.819-822
    • /
    • 2005
  • 본 연구는 MDCT 영상을 이용하여 인체의 장기인 간을 추출하고 그 간 내부의 혈관을 추출하는 알고리즘을 제안하였다. 간에는 2개의 주요혈관이 있는데 생체 간 이식 수술시 필수적인 간의 절개 비율 및 간 내의 혈관 모습들을 제공하여 의료진에게 수술 전 혈관 형태에 대한 정확히 정보를 파악하도록 함으로써 혈관의 손상을 최대한으로 줄일 수 있도록 하여 수술 성공률을 높이는데 중요한 역할을 할 수 있다. 간을 이식 할 때 기증자와 수혜자가 동시에 생존하기 위해서는 기증자의 간으 크기가 중요하며 둘다 생존하기 위해서는 기증자는 자신의 간의 35% 이상을 남겨야 하며 수혜자 또한 생존을 위해 자신의 간의 40% 이상에 해당하는 간을 이식 받아야 하는데 간 이식에 있어서 절단 부분을 결정하는데 중요한 중간 정맥을 찾아내어 보여 줌으로써 중간 정맥을 중심으로 3가닥의 굵은 혈관과 주변혈관의 손상을 최소화하고 비율을 잘 맞추어 절단 할 수 있도록 수술하는데 도움을 줄 수 있다. 각 혈관은 원형성과 다양한 각도를 갖는 막대형의 형태를 가지고 있다는 특징을 이용해 morphological filtering을 통해 추출한 후 조합하여 재구성을 하여 혈관의 모습으로 생성해 낼 수 있었다.

  • PDF

Research of z-axis geometric dose efficiency in multi-detector computed tomography (MDCT 장치의 z-축 기하학적 선량효율에 관한 연구)

  • Kim, You-Hyun;Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.167-175
    • /
    • 2006
  • With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows ; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. 4. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for image reconstruction. As a conclusion, for reduction of patient radiation dose delivered from CT examination we are particularly concerned with dose efficiency of equipment and have to select proper scanning parameters which increase z-axis geometric dose efficiency within the range of preserving optimum clinical information in MDCT examination.

  • PDF

Liver Cut Method Using 4 Points for Hepatic Volumerty at MDCT Image (MDCT 영상에서 간 체적 계산을 위한 4 점 이용 간 분할 방법)

  • Seo, Jeong-Joo;Cho, Baik-Hwan;Park, Jong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • This paper proposed the method to separate a liver into left and right liver lobes for exact volumetry of the river graft at abdominal MDCT(Multi-Detector Computed Tomography) image before living donor liver transplantation. On the image of segmented liver, 4 points(the middle point of Inferior Vena Cava, a point of Middle Hepatic Vein, a point of Portal Vein, a middle point of gallbladder fossa) are selected. A liver is separated into left and right liver lobes on the basis of the 4 points. The volume and ratio of the river graft are estimated. The volume estimated using 4 points and the manual volume that radiologist processed and estimated are compared with the weight measured during surgery to support proof of the exact volumetry. After selection the 4 points, the time involved in separation a liver into left and right river lobe and volumetry of them is measured for confirmation that the algorithm can be used on real time during surgery. This study progressed to ensure donor's and recipient's safe who will undergo the liver transplantation.

CT Findings of Central Airway Lesions Causing Airway Stenosis-Visualization and Quantification: A Pictorial Essay (협착을 유발하는 중심 기관지 병변들의 전산화단층촬영 소견-시각화 및 정량화: 임상화보)

  • Myeong Jin Choi;Hee Kang
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1441-1476
    • /
    • 2021
  • The tracheobronchial tree is a system of airways that allows the passage of air to aerate the lungs and entire body. Several pathological conditions can affect this anatomical region. Multidetector CT (MDCT) helps identify and characterize various large airway diseases. Post-processing tools, such as virtual bronchoscopy and automatic lung analysis, can help enhance the performance of imaging studies. In this pictorial essay review, we provide imaging findings of various bronchial lesions manifested as wall thickening and endoluminal nodules on conventional MDCT and advanced image visualization and analysis.

Detection for Contrast Media Extravasation using Bolus Tracking Systems of CT (CT Bolus Tracking System을 이용한 조영제의 혈관외유출 검출)

  • Kweon, Dae-Cheol;Lee, Yong-Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.137-142
    • /
    • 2016
  • When injecting intravenously of CT inspection, the effusion of the contrast meium can induce the tissue damage with the blood vessel outside. We detect extravasation which is generated in the course where we inject the contrast medium into the blood vessel. And we use the bolus tracking system for the detection of that. By using MPR and VR images, moreover we detected the extravasation in order to prevent the tissue damage. In order to detect the effusion of the contrast medium, we used 16-MDCT and 64-MDCT. Three dimensional images about the outflow of the blood vessel can provide the treatment information which is important in the patient treatment. Moreover we applied the image processing technique in order to improve sharpness between contrast media and organization. And sharpness and contrast was improved.