• Title/Summary/Keyword: MCT 변환

Search Result 6, Processing Time 0.017 seconds

Development of Rotation Invariant Real-Time Multiple Face-Detection Engine (회전변화에 무관한 실시간 다중 얼굴 검출 엔진 개발)

  • Han, Dong-Il;Choi, Jong-Ho;Yoo, Seong-Joon;Oh, Se-Chang;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.116-128
    • /
    • 2011
  • In this paper, we propose the structure of a high-performance face-detection engine that responds well to facial rotating changes using rotation transformation which minimize the required memory usage compared to the previous face-detection engine. The validity of the proposed structure has been verified through the implementation of FPGA. For high performance face detection, the MCT (Modified Census Transform) method, which is robust against lighting change, was used. The Adaboost learning algorithm was used for creating optimized learning data. And the rotation transformation method was added to maintain effectiveness against face rotating changes. The proposed hardware structure was composed of Color Space Converter, Noise Filter, Memory Controller Interface, Image Rotator, Image Scaler, MCT(Modified Census Transform), Candidate Detector / Confidence Mapper, Position Resizer, Data Grouper, Overlay Processor / Color Overlay Processor. The face detection engine was tested using a Virtex5 LX330 FPGA board, a QVGA grade CMOS camera, and an LCD Display. It was verified that the engine demonstrated excellent performance in diverse real life environments and in a face detection standard database. As a result, a high performance real time face detection engine that can conduct real time processing at speeds of at least 60 frames per second, which is effective against lighting changes and face rotating changes and can detect 32 faces in diverse sizes simultaneously, was developed.

An Illumination Invariant Traffic Sign Recognition in the Driving Environment for Intelligence Vehicles (지능형 자동차를 위한 조명 변화에 강인한 도로표지판 검출 및 인식)

  • Lee, Taewoo;Lim, Kwangyong;Bae, Guntae;Byun, Hyeran;Choi, Yeongwoo
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.203-212
    • /
    • 2015
  • This paper proposes a traffic sign recognition method in real road environments. The video stream in driving environments has two different characteristics compared to a general object video stream. First, the number of traffic sign types is limited and their shapes are mostly simple. Second, the camera cannot take clear pictures in the road scenes since there are many illumination changes and weather conditions are continuously changing. In this paper, we improve a modified census transform(MCT) to extract features effectively from the road scenes that have many illumination changes. The extracted features are collected by histograms and are transformed by the dense descriptors into very high dimensional vectors. Then, the high dimensional descriptors are encoded into a low dimensional feature vector by Fisher-vector coding and Gaussian Mixture Model. The proposed method shows illumination invariant detection and recognition, and the performance is sufficient to detect and recognize traffic signs in real-time with high accuracy.

A Study on the Information Reversibility of Quantum Logic Circuits (양자 논리회로의 정보 가역성에 대한 고찰)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.189-194
    • /
    • 2017
  • The reversibility of a quantum logic circuit can be realized when two reversible conditions of information reversible and energy reversible circuits are satisfied. In this paper, we have modeled the computation cycle required to recover the information reversibility from the multivalued quantum logic to the original state. For modeling, we used a function embedding method that uses a unitary switch as an arithmetic exponentiation switch. In the quantum logic circuit, if the adjoint gate pair is symmetric, the unitary switch function shows the balance function characteristic, and it takes 1 cycle operation to recover the original information reversibility. Conversely, if it is an asymmetric structure, it takes two cycle operations by the constant function. In this paper, we show that the problem of 2-cycle restoration according to the asymmetric structure when the hybrid MCT gate is realized with the ternary M-S gate can be solved by equivalent conversion of the asymmetric gate to the gate of the symmetric structure.

Design and Implementation of Real-time High Performance Face Detection Engine (고성능 실시간 얼굴 검출 엔진의 설계 및 구현)

  • Han, Dong-Il;Cho, Hyun-Jong;Choi, Jong-Ho;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.33-44
    • /
    • 2010
  • This paper propose the structure of real-time face detection hardware architecture for robot vision processing applications. The proposed architecture is robust against illumination changes and operates at no less than 60 frames per second. It uses Modified Census Transform to obtain face characteristics robust against illumination changes. And the AdaBoost algorithm is adopted to learn and generate the characteristics of the face data, and finally detected the face using this data. This paper describes the face detection hardware structure composed of Memory Interface, Image Scaler, MCT Generator, Candidate Detector, Confidence Comparator, Position Resizer, Data Grouper, and Detected Result Display, and verification Result of Hardware Implementation with using Virtex5 LX330 FPGA of Xilinx. Verification result with using the images from a camera showed that maximum 32 faces per one frame can be detected at the speed of maximum 149 frame per second.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

Advanced LWIR Thermal Imaging System with a Large Zoom Optics (줌 광학계를 이용한 원적외선 열상장비의 설계 및 제작)

  • Hong, Seok-Min;Kim, Hyun-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.354-360
    • /
    • 2005
  • A high performance LWIR(long wavelength infra red) zoom thermal imaging sensor using $480{\times}6$ HgCdTe(MCT) linear detector has been developed by ADD Korea. The optical system consists of zoom telescope having large objective about 190 mm diameter and optically well corrected scanning system. The zoom ratio of the telescope is 3: 1 and its magnification change is performed by moving two lens groups. And also these moving groups are used for athermalization of the system. It is certain that the zoom sensor can be used in wide operating temperature range without any degradation of the system performance. Especially, the sensor image can be displayed with the HDTV(high definition television) format of which aspect ratio is 16:9. In case of HDTV format, the scanning system is able to display 620,000 pixels. This function can make wider horizontal field of view without any loss of performance than the normal TV format image. The MRTD(minimum resolvable temperature difference) of the LWIR thermal imaging sensor shows good results below 0.04 K at spatial frequency 2 cycles/mrad and 0.23 K at spatial frequency 8 cycles/mrad at the narrow field of view.