• 제목/요약/키워드: MCS (minimal cut set)

검색결과 10건 처리시간 0.23초

FTA를 적용한 태양광 발전 및 ESS 연계형 PCS의 안전성 평가 (Safety Assessment for PCS of Photovoltaic and Energy Storage System Applying FTA)

  • 김두현;김성철;김의식;남기공;정천기
    • 한국안전학회지
    • /
    • 제34권1호
    • /
    • pp.14-20
    • /
    • 2019
  • This paper presents a safety assessment based approach for the safe operation for PCS(Power Conditioning System) of photovoltaic and energy storage systems, applying FTA. The approach established top events as power outage and a failure likely to cause the largest damage among the potential risks of PCS. Then the Minimal Cut Set (MCS) and the importance of basic events were analyzed for implementing risk assessment. To cope with the objects, the components and their functions of PCS were categorized. To calculate the MCS frequency based on IEEE J Photovolt 2013, IEEE Std. 493-2007 and RAC (EPRD, NPRD), the failure rate and failure mode were produced regarding the basic events. In order to analyze the top event of failure and power outage, it was assumed that failures occurred in DC breaker, AC breaker, SMPS, DC filter, Inverter, CT, PT, DSP board, HMI, AC reactor, MC and EMI filter and Fault Tree was drawn. It is expected that the MCS and the importance of basic event resulting from this study will help find and remove the causes of failure and power outage in PCS for efficient safety management.

최소절단집합과 최소경로집합을 이용한 구조 및 신뢰성 중요도 척도의 개발 및 적용 (Development and Implementation of Measures for Structural and Reliability Importance by Using Minimal Cut Sets and Minimal Path Sets)

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제14권1호
    • /
    • pp.225-233
    • /
    • 2012
  • The research discusses interrelationship of structural and reliability importance measures which used in the probabilistic safety assessment. The most frequently used component importance measures, such as Birnbaum's Importance (BI), Risk Reduction (RR), Risk Reduction Worth (RRW), RA (Risk Achievement), Risk Achievement Worth (RAW), Fussel Vesely (FV) and Critically Importance (CI) can be derived from two structure importance measures that are developed based on the size and the number of Minimal Path Set (MPS) and Minimal Cut Set (MCS). In order to show an effectiveness of importance measures which is developed in this paper, the three representative functional structures, such as series-parallel, k out of n and bridge are used to compare with Birnbaum's Importance measure. In addition, the study presents the implementation examples of Total Productive Maintenance (TPM) metrics and alternating renewal process models with exponential distribution to calculate the availability and unavailability of component facility for improving system performances. System state structure functions in terms of component states can be converted into the system availability (unavailability) functions by substituting the component reliabilities (unavailabilities) for the component states. The applicable examples are presented in order to help the understanding of practitioners.

고장수목으로부터 변환된 BDD에서 효율적인 MCS 추출을 위한 BDD 재구성 방법과 새로운 근사확률 공식 (A Method of BDD Restructuring for Efficient MCS Extraction in BDD Converted from Fault Tree and A New Approximate Probability Formula)

  • 조병호;현원기;이우준;김상암
    • 한국정보통신학회논문지
    • /
    • 제23권6호
    • /
    • pp.711-718
    • /
    • 2019
  • 이진결정도는 고장수목 해석에서 기존의 Boolean Logic 해석법의 잘 알려진 대체 방법이다. 고장수목의 규모가 커짐에 따라 계산에 필요한 컴퓨터 연산시간과 자원이 급격하게 증가한다. 이진결정도로부터 단절집합 및 최소단절 집합을 효과적으로 계산하기 위해 새로운 고장경로 탐색법과 고장경로 재구성 방법이 제안되었다. 고장경로 그룹화와 Bottom-Up 탐색법은 고장경로의 탐색에 효율적임을 증명하였고, 최소단절집합 계산을 위한 단절집합의 비교계산 횟수를 줄이기 위해 경로 재구성 방법을 사용할 수 있음을 증명하였다. 새로 제안된 방법을 적용하고, 기존의 근사확률 공식인 MCUB 확률공식과 동일한 새로운 ASDMP 확률공식을 사용하여 정상사상 확률을 계산 할 수 있다.

최소절단집합과 퍼지이론을 이용한 FMECA 전문가 시스템 (Expert System for FMECA Using Minimal Cut Set and Fuzzy Theory)

  • 김동진;김진오;김형철
    • 한국철도학회논문집
    • /
    • 제12권3호
    • /
    • pp.342-347
    • /
    • 2009
  • 고장모드, 영향 및 임계분석(FMECA)은 시스템의 구성요소가 갖는 잠재적인 고장모드와 각 고장모드가 시스템에 미치는 영향을 평가하는 도구로 활용된다. 일반적으로 FMECA는 관련 전문가들의 의견에 따라 고장모드의 심각도와 치명도를 평가하여 이를 위험도 매트릭스의 양축으로 나타냄으로써 중요한 고장모드에 대한 분석을 수행한다. 그러나 이러한 절차는 평가가 전문가의 주관에 의해 이루어져 결과에 불확실성이 포함될 수밖에 없다. 따라서 본 논문에서는 최소절단집(MCS)와 퍼지이론을 이용한 새로운 FMECA 절차를 제안한다. 심각도 평가에 있어서는 MCS를 이용함으로써 객관적인 구조적 중요도를 평가할 수 있게 하였고, 치병도의 평가에서는 설비의 대표적인 고장률을 이용하였다. 그리고 두 지수를 종합하기 위해 퍼지 전문가 시스템을 구성하여 종합적인 위험도를 평가하였다.

RBD와 FTA의 논리구조와 신뢰성 중요도의 고찰에 의한 시스템 비시간가동률 개선방안 (Improvement Strategy of System Unavailability by Review of Logical Structure and Reliability Importance of Reliability Block Diagram (RED) and Fault Tree Analysis (FTA))

  • 최성운
    • 대한안전경영과학회지
    • /
    • 제13권3호
    • /
    • pp.45-53
    • /
    • 2011
  • The research proposes seven elimination rules of redundant gates and blocks in Fault Tree Analysis (FTA) and Reliability Block Diagram (RBD). The computational complexity of cut sets and path sets is NP-hard. In order to reduce the complexity of Minimal Cut Set (MCS) and Minimal Path Set (MPS), the paper classifies generation algorithms. Moreover, the study develops six implementation steps which reflect structural importance (SI) and reliability importance (RI) from Reliability Centered Maintenance (RCM) that a priority of using the functional logic among components is to reduce (improve) the system unavailability (or availability). The proposed steps include efficient generation of state structure function by Rare Event Enumeration (REA). Effective use of importance measures, such as SI and ill measures, is presented based on the number and the size of MCS and MPS which is generated from the reference[5] of this paper. In addition, numerical examples are presented for practitioners to obtain the comprehensive understanding of six steps that is proposed in this research.

FTA를 이용한 수변전설비의 최소절단집합 도출 (Minimal Cut Set of Electric Power Installations using Fault Tree Analysis)

  • 박영호;김두현;김성철
    • 한국안전학회지
    • /
    • 제32권1호
    • /
    • pp.41-46
    • /
    • 2017
  • In this paper, from making an electrical fire which is thought to be the most damaging among potential dangers as a top event, minimal cut sets (MCS) about it were analyzed. For this, components of a power substation were classified into 15 items. Failure rates and modes were extracted based on Korea Electrical Safety Corporation, IEEE Gold Book, and RAC. To analyze the top event (an electrical fire), main events were assorted into "safety devices for overcurrent" and "ampere meter of detecter". Failure of components was divided into failure of VCB, COS, and MCCB. A fault tree was composed of 3 AND gate, 5 OR gates and 17 basic events. Overlapped events among the basic events are things which occur from relevant components. They were attached to the tree by distinguishing identifiers. In case of FT, two minimal cut sets of "IO_METER", "MF_METER", "DO_MCCB" and "IO_METER", "MF_METER", "DO_VCB" take 46% of electrical fires. Therefore, about basic events which are included in the top two minimum cut sets, strict control is necessary.

How to incorporate human failure event recovery into minimal cut set generation stage for efficient probabilistic safety assessments of nuclear power plants

  • Jung, Woo Sik;Park, Seong Kyu;Weglian, John E.;Riley, Jeff
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.110-116
    • /
    • 2022
  • Human failure event (HFE) dependency analysis is a part of human reliability analysis (HRA). For efficient HFE dependency analysis, a maximum number of minimal cut sets (MCSs) that have HFE combinations are generated from the fault trees for the probabilistic safety assessment (PSA) of nuclear power plants (NPPs). After collecting potential HFE combinations, dependency levels of subsequent HFEs on the preceding HFEs in each MCS are analyzed and assigned as conditional probabilities. Then, HFE recovery is performed to reflect these conditional probabilities in MCSs by modifying MCSs. Inappropriate HFE dependency analysis and HFE recovery might lead to an inaccurate core damage frequency (CDF). Using the above process, HFE recovery is performed on MCSs that are generated with a non-zero truncation limit, where many MCSs that have HFE combinations are truncated. As a result, the resultant CDF might be underestimated. In this paper, a new method is suggested to incorporate HFE recovery into the MCS generation stage. Compared to the current approach with a separate HFE recovery after MCS generation, this new method can (1) reduce the total time and burden for MCS generation and HFE recovery, (2) prevent the truncation of MCSs that have dependent HFEs, and (3) avoid CDF underestimation. This new method is a simple but very effective means of performing MCS generation and HFE recovery simultaneously and improving CDF accuracy. The effectiveness and strength of the new method are clearly demonstrated and discussed with fault trees and HFE combinations that have joint probabilities.

FTA를 이용한 볼트 유도가열시스템의 고장 및 전기화재 분석 (Analysis of Failure and Electrical Fire for Bolt Induction Heating System Using FTA)

  • 김두현;김성철;엄한얼;강문수;정천기
    • 한국안전학회지
    • /
    • 제36권4호
    • /
    • pp.12-19
    • /
    • 2021
  • This paper presents a safety assessment method for FTA-based induction heating systems; the failures and causes of electrical fire are first analyzed for each part and module qualitatively, and methods to manage high probabilities of failure and electrical fire are considered, thereby improving the reliability of the induction heating system. The cumulative importance value (ACC) of the minimal cut set is drawn by setting failure as the top event, and STACK and SMPS are observed to account for about 70% of the induction heating system failures. Thus, intensively managing the basic events contained in the minimal cut set of failures for STACK and SMPS is expected to provide effective and stable operation of the induction heating system. When electrical fire is set as the top event, the STACK percentage is 90%. Accordingly, the current IGBT is changed to a FET to increase the applied voltage and prevent induction heating system failure, and a heat sink plane is installed to prevent FET heating caused by switching, thereby preventing an electrical fire. By classifying the parts and modules of the induction heating system in detail and by applying FTA based on actual failure rates and relevant data, more practical and reasonable results may be expected. Hence, continuous research must be conducted to ensure safety when using induction heating systems.

VIPEX를 이용한 가상 원자력시설의 핵심구역 파악 분석 (Vital Area Identification Analysis of A Hypothetical Nuclear Facility Using VIPEX)

  • 이윤환;정우식;이진홍
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.87-95
    • /
    • 2011
  • The urgent VAI(Vital Area Identification) method development is required since 'The Act of Physical Protection and Radiological Emergency' that is established in 2003 requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The KAERI(Korea Atomic Energy Research Institute) has developed the VAI methodology and VAI software called as VIPEX(Vital area Identification Package EXpert) for identifying the vital areas. This study is to demonstrate the applicability of KAERI's VAI methodology to a hypothetical facility, and to identify the importance of information of cable and piping runs when identifying the vital areas. It is necessarily needed to consider cable and piping runs to determine the accurate and realistic TEPS(Top Event Prevention Set). If the information of cable and piping runs of a nuclear power plant is not considered when determining the TEPSs, it is absolutely impossible to acquire the complete TEPSs, and the results could be distorted by missing it. The VIPEX and FTREX(Fault Tree Reliability Evaluation eXpert) properly calculate MCSs and TEPSs using the fault tree model, and provide the most cost-effective method to save the VAI and physical protection costs.

PSA기법을 이용한 원자력시설의 핵심구역 파악 (Vital Area Identification of Nuclear Facilities by using PSA)

  • 이윤환;정우식;황미정;양준언
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.63-68
    • /
    • 2009
  • The urgent VAI method development is required since "The Act of Physical Protection and Radiological Emergency that is established in 2003" requires an evaluation of physical threats in nuclear facilities and an establishment of physical protection in Korea. The VAI methodology is developed to (1) make a sabotage model by reusing existing fire/flooding/pipe break PSA models, (2) calculate MCSs and TEPSs, (3) select the most cost-effective TEPS among many TEPSs, (4) determine the compartments in a selected TEPS as vital areas, and (5) provide protection measures to the vital areas. The developed VAI methodology contains four steps, (1) collecting the internal level 1 PSA model and information, (2) developing the fire/flood/pipe rupture model based on level 1 PSA model, (3) integrating the fire/flood/pipe rupture model into the sabotage model by JSTAR, and (4) calculating MCSs and TEPS. The VAT process is performed through the VIPEX that was developed in KAERI. This methodology serves as a guide to develop a sabotage model by using existing internal and external PSA models. When this methodology is used to identify the vital areas, it provides the most cost-effective method to save the VAI and physical protection costs.