• Title/Summary/Keyword: MCS(Monte Carlo Simulation) Analysis

Search Result 101, Processing Time 0.025 seconds

Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.251-262
    • /
    • 2007
  • This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.

Estimating the Loss Ratio of Solar Photovoltaic Electricity Generation through Stochastic Analysis

  • Hong, Taehoon;Koo, Choongwan;Lee, Minhyun
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.3
    • /
    • pp.23-34
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

ESTIMATING THE LOSS RATIO OF SOLAR PHOTOVOLTAIC ELECTRICITY GENERATION THROUGH STOCHASTIC ANALYSIS

  • Taehoon Hong;Choongwan Koo;Minhyun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.375-385
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

  • PDF

Reliability Analysis of Chloride Ion Penetration based on Level II Method for Marine Concrete Structure (해양 콘크리트 구조물에 대한 Level II 수준에서의 염소이온침투 신뢰성 해석)

  • Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.129-139
    • /
    • 2008
  • Due to uncertainty of numerous variables in durability model, a probalistic approach is increasing. Monte Carlo simulation (Level III method) is an easily accessible method, but requires a lot of repeated operations. This paper evaluated the effectiveness of First Order Second Moment method (Level II method), which is more convenient and time saving method than MCS, to predict the corrosion initiation in harbor concrete structure. Mean Value First Order Second Moment method (MV FOSM) and Advanced First Order Second Moment method (AFOSM) are applied to the error function solution of Fick's second law modeling chloride diffusion. Reliability index and failure probability based on MV FOSM and AFOSM are compared with the results by MCS. The comparison showed that AFOSM and MCS predict the similar reliability index and MV FOSM underestimates the probability of corrosion initiation by chloride attack. Also, the sensitivity of variables in durability model to corrosion initiation probability was evaluated on the basis of AFOSM. The results showed that AFOSM is a simple and efficient method to estimate the probability of corrosion initiation in harbor structures.

Reliability Estimation Using Kriging Metamodel (크리깅 메타모델을 이용한 신뢰도 계산)

  • Cho Tae-Min;Ju Byeong-Hyeon;Jung Do-Hyun;Lee Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.941-948
    • /
    • 2006
  • In this study, the new method for reliability estimation is proposed using kriging metamodel. Kriging metamodel can be determined by appropriate sampling range and sampling numbers because there are no random errors in the Design and Analysis of Computer Experiments(DACE) model. The first kriging metamodel is made based on widely ranged sampling points. The Advanced First Order Reliability Method(AFORM) is applied to the first kriging metamodel to estimate the reliability approximately. Then, the second kriging metamodel is constructed using additional sampling points with updated sampling range. The Monte-Carlo Simulation(MCS) is applied to the second kriging metamodel to evaluate the reliability. The proposed method is applied to numerical examples and the results are almost equal to the reference reliability.

Harmonics Analysis of AC High Speed Railroad(HSR) System using Probabilistic Approach (확률론적 방법을 이용한 교류 고속철도 시스템의 고조파 해석)

  • Song Hak-Seon;Lee Jun-Kyong;Kim Jin-O;Kim Hyong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.782-787
    • /
    • 2005
  • Magnitude of generated harmonic currents along with the operation of AC traction has nonlinear characteristics, and generated harmonic currents for high speed traction are more and more in high speed railroad(HSR) systems, especially. This paper presents probabilistic approximation method for the harmonic currents analysis about the operating speed of AC traction. To use probabilistic method for HSR system, probability density function(PDF) for collected operating speed based measure data is calculated. Mean and variance of harmonic currents of single traction are obtained based on the operating speed PDF and electrical traction model. The results of Monte Carlo Simulation(MCS) are in well accordance with the experimental and analytic methods. The harmonics of different number of trainloads are systematically investigated. It is assessed by the total demand distortion(TDD) for the HSR system.

  • PDF

Probabilistic Risk Assessment of Coastal Structures using LHS-based Reliability Analysis Method (LHS기반 신뢰성해석 기법을 이용한 해안구조물의 확률론적 위험도평가)

  • Huh, Jung-Won;Jung, Hong-Woo;Ahn, Jin-Hee;An, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.72-79
    • /
    • 2015
  • An efficient and practical reliability evaluation method is proposed for the coastal structures in this paper. It is capable of evaluating reliability of real complicated coastal structures considering uncertainties in various sources of design parameters, such as wave and current loads, resistance-related design variables including Young's modulus and compressive strength of the reinforced concrete, soil parameters, and boundary conditions. It is developed by intelligently integrating the Latin Hypercube sampling (LHS), Monte Carlo simulation (MCS) and the finite element method (FEM). The LHS-based MCS is used to significantly reduce the computational effort by limiting the number of simulation cycles required for the reliability evaluation. The applicability and efficiency of the proposed method were verified using a caisson-type breakwater structure in the numerical example.

Estimating Maintenance Cost by Actual Database Based on Operation in Sewage Treatment Plant (하수처리장 실적데이터베이스를 활용한 유지관리비용 예측)

  • Lee, Tai-Sik;Kwak, Dong-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2803-2809
    • /
    • 2009
  • For a successful construction project not only construction engineering and project management technology but also economic evaluation technique is required. Design and construction technologies are necessary to receive a project order. However, construction management technology which can be apply from the project initial phase to the project operation and management phase is required to create a benefit from the project. Construction management technology is one of the effective factors for project success. Economical and efficient cost management from the planning phase influences the project success. This study investigated cost flow and cost factors of domestic Sewage Treatment Plant project for systematic analysis of cost items following the entire project phase. Particularly, data modeling based on domestic Sewage Treatment Equipment maintenance cost DB was performed, and maintenance cost estimation trend line is suggested using Monte carlo Simulation Method to decrease uncertainty of actual results DB and for feasibility study. Korea Academia-Industrial cooperation Society. The Korea Academia-Industrial cooperation Society. The Korea Academia-Industrial cooperation Society. The Korea Academia-Industrial cooperation Society.

Flood Risk and Vulnerability Analysis by Climate Change in an Urban Stream : A Case Study of the Woo-yi Stream Basin (도시하천의 기후변화에 따른 홍수위험 및 취약성 분석: 우이천유역을 중심으로)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Gui-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.981-981
    • /
    • 2012
  • 최근 지구환경 변화에 따른 기후변화의 영향으로 자연재해의 형태는 점차 대형화, 다양화되고 있으며 극치사상의 발생 빈도가 계속해서 증가하고 있는 추세이다. 특히 도시하천의 경우 인구와 재산이 밀집해 있어 기후변화에 따른 홍수위험 및 취약성이 클 것으로 사료된다. 본 연구에서는 기후 변화에 따른 홍수위험 및 취약성 분석을 위하여 위험도 기반 불확실성을 다루는 수단으로 UQR-MCS (Upper Quartile Range-Monte Carlo Simulation)을 적용하였으며, 다양한 형태의 확률 분포로부터 특정변량(variable)의 확률분포 Quartile을 모의하였다. 또한 기후변화에 따른 도시하천의 홍수위험 및 취약성 평가를 위하여 도시하천에 적합한 홍수위험 및 취약성평가 지수(FVI: flood vulnerability index)를 산정하였으며, 홍수취약성지수는 기후변화(Climate change)와 도시화(Urbanization), 제방월류위험(Overtopping risk) 및 홍수범람 면적(Flood area) 등의 지표를 사용하였다. 각각의 지표는 엔트로피(Entropy) 기법을 적용하여 가중치를 부여하였으며, 표준화과정을 통한 일반화된 지표 값을 산정하였다. 우이천 유역의 기후변화에 따른 홍수위험 및 취약성 지표값은 KMA RCM A1B 시나리오자료를 바탕으로 추정한 미래 확률강수량과 각 인자별 재현기간에 따른 수문변량의 변화를 통하여 산정하였다. 본 연구의 결과는 향후 도시하천의 기후변화에 따른 홍수위험도분석 및 취약성 평가, 극치 수문사상에 대한 신뢰성 있는 분석과 더불어 예상치 못할 이상홍수에 대비한 하천방재 연구에 도움이 되리라 사료된다.

  • PDF

Critical Strengthening Ratio of CFRP Plate Using Probability and Reliability Analysis for Concrete Railroad Bridge Strengthened by NSM (확률.신뢰도 기법을 적용한 CFRP 플레이트 표면매립보강 콘크리트 철도교의 임계보강비 산정)

  • Oh, Hong-Seob;Sun, Jong-Wan;Oh, Kwang-Chin;Sim, Jong-Sung;Ju, Min-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.681-688
    • /
    • 2009
  • The railroad bridges have been usually experienced by vibration and impact in service state. With this reason, it is important that the effective strengthening capacity should be considered to resist the kind of service loading. In this study, NSM strengthening technique is recommended for the concrete railroad bridge because of its better effective resistance for dynamic loading condition and strengthening cost than the conventional externally bonded strengthening using fiber sheet. However, to widely apply NSM method for the concrete railroad bridge, it needs that the strengthening ratio has to be reasonably evaluated with geometrical and material uncertainties, especially for the concrete bridge under long-term service state without the apparent design history and detail information such as concrete compressive strength, reinforcing ratio, railroad characteristics. The purpose of this study is to propose the critical strengthening ratio of CFRP plate for the targeted concrete railroad bridge with uncertainties of deterioration of the structures. To do this, Monte Carlo Simulation (MCS) for geometrical and material uncertainties have been applied so that this approach may bring the reasonable strengthening ratio of CFRP plate considering probabilistic uncertainties for the targeted concrete railroad bridge. Finally, the critical strengthening ratio of NSM strengthened by CFRP plate is calculated by using the limit state function based on the target reliability index of 3.5.