• Title/Summary/Keyword: MCF7 cells

Search Result 742, Processing Time 0.032 seconds

Effects of Green Tea Extract on the p53 Pathway in the MCF-7 Breast Cancer Cell Line (유방암 세포 주 MCF-7에서의 녹차 추출물이 p53 경로에 미치는 영향)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1316-1320
    • /
    • 2018
  • The effects of a green tea extract (GTE) were examined using the MCF-7 human breast cancer cell line. Cell viability assays using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed that GTE had a significant cytotoxic effect on MCF-7 cells, depending on the concentration of GTE. Western blotting of p53 and its related proteins, p21/cip1 and CDK2, after GTE treatment revealed that a significant and concentration dependent increase in p53 protein in response to GTE. The levels of p21/cip1 proteins were also increased at low GTE concentrations were significantly increased even at the highest GTE concentrations. However, the level of CDK2 was significantly decreased by treatment with high concentrations of GTE. These results indicate that treatment with GTE increased the p53 level in MCF-7 cells, and this activation of p53 markedly elevated the levels of p21/cip1proteins, which, in turn, inhibited CDK2 expression in the MCF-7 cells. The inhibition of CDK2 expression might then affect cell cycle progression. Subsequent FACS analysis indicated that GTE treatment the gradually increased progression of the MCF-7 to the G1 phase. These results clearly demonstrate that the anti-tumor effect of GTE in MCF-7 cells is regulated by p53 arrest of the MCF-7 cells at the G1 stage of cell cycle.

Insulin Promotes Proliferation and Migration of Breast Cancer Cells through the Extracellular Regulated Kinase Pathway

  • Pan, Feng;Hong, Li-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6349-6352
    • /
    • 2014
  • The present study was undertaken to determine the roles of insulin in the growth of transplanted breast cancer in nude mice, and the proliferation and migration of MCF-7 human breast cancer cells and assess its influence on downstream signaling pathways. In a xenograft mouse model with injection of MCF-7 human breast cancer cells, tumor size was measured every other day. The insulin level and insulin receptor (IR) were increased in the breast cancer patient tissues. Insulin injected subcutaneously around the tumor site in mice caused increase in the size and weight of tumor masses, and promoted proliferation and migration of MCF-7 cells. The effects of insulin on the increase in the proliferation and migration of MCF-7 human breast cancer cells were abolished by pretreatment with the extracellular regulated kinase (ERK) inhibitor PD98059. Insulin increased the phosphorylation of ERK in the MCF-7 cells. These results indicate that insulin promotes the growth of breast cancer in nude mice, and increases the proliferation and migration of MCF-7 human breast cancer cells via the ERK pathway.

Estrogen Receptor Enhances the Antiproliferative Effects of Trichostatin A and HC-toxin in Human Breast Cancer Cells

  • Min, Kyung-Nan;Cho, Min-Jung;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.554-561
    • /
    • 2004
  • Trichostatin A, an antifungal antibiotics, and HC-toxin are potent and specific inhibitors of histone deacetylase activity. Histone deacetylase inhibitors are new class of chemotherapeutic drugs able to induce tumor cell apoptosis and/or cell cycle arrest. In this study, the antiproliferative activities of trichostatin A and HC-toxin were compared between estrogen receptor positive human breast cancer cell MCF-7 and estrogen receptor negative human breast cancer cell MDA-MB-468. Trichostatin A and HC-toxin showed potent antiproliferative activity in both MCF-7 and MDA-MB-468 cells. In MCF-7 cells that contain high level estrogen receptor, trichostatin A and HC-toxin brought about three-times more potent cell growth inhibitory effect than estrogen receptor negative MDA-MB-468 cells. Both trichostatin A and HC-toxin showed cell cycle arrest at G$_2$/M phases of MCF-7 and MDA-MB-468 cells in a dose- and time- depen- dent manner. Trichostatin A and HC-toxin also induced apoptosis from MCF-7 and MDA-MB-468 cells in a dose- and time-dependent manner. Results of this study suggested that antipro-liferative effects of trichostatin A and HC-toxin might be involved in estrogen receptor signaling pathway, but cell cycle arrest and apoptosis of trichostatin A and HC-toxin might not be involved in estrogen receptor system of human breast cancer cells.

Anti-Proliferation Effects of Decursin from Angelica gigas Nakai in the MCF-7 Cells Treated with Environmental Hormones (환경호르몬에 의해 유도된 인체 유방암세포의 증식에 대한 당귀로부터 분리한 Decursin 억제효과)

  • Park, Kyung-Wuk;Choi, Sa-Ra;Yang, Hee-Sun;Cho, Hyun-Wook;Kang, Kap-Suk;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.825-831
    • /
    • 2007
  • Anti-proliferation effects of decursin from Angelica gigas Nakai were investigated in the MCF-7 cells treated with environmental hormones. The proliferation was decreased in a dose-dependent manner at the concentration over 20 ${\mu}g/mL$ in the MCF-7 cells treated with decursin of various concentrations. The environmental hormones such as $17{\beta}$-estradiol and bisphenol increased the growth of MCF-7 cells in the charcoal-treated FBS (cFBS) medium and the proliferation was the highest at 0.1 ${\mu}M$ among the tested hormone concentration. Decursin was predicted to inhibit the proliferation in a dose-dependent fashion at tested concentrations (1, 3, 10 or 30 ${\mu}g/mL$) in the MCF-7 cells added environmental hormones; however, the survival rate of the cells was lower than that of control cells that were not treated with decursin at 30 ${\mu}g/mL$ concentration. The chromatin condensation and apoptotic body were examined in the decursin treated cells cultured with the cFBS medium added environmental hormones. These results suggest that decursin decreased the proliferation through apoptosis in the MCF-7 cells added environmental hormones.

Combined Treatment of Sodium Salicylate and Genistein Induces Incomplete Apoptosis and Necrosis in MCF-7 Multicellular Tumor Spheroids (MCF-7 MTS에서 sodium salicylate과 genistein 복합처리는 불완전한 세포사멸과 세포괴사를 유도한다)

  • Lee, Su-Yeon;Kim, Cho-Hee;Jeon, Hyun-Min;Ju, Min-Kyung;Kim, Min-Young;Jeong, Eui-Kyong;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1145-1151
    • /
    • 2012
  • Aspirin and its deacetylated form, sodium salicylate (NaSal), have been shown to exert chemopreventive activities against many human cancers including those of the colon, lung, and breast. Previously, we showed that combined treatment of NaSal and genistein synergistically induced apoptosis in A549 lung cancer cells, indicating that these two natural chemicals could be used in combination for cancer therapy. In this study, we examined effects of NaSal/genistein combined treatment on other cancer cells and in three-dimensional multicellular tumor spheroid (MTS) and in an in vitro solid tumor model. We found that the combined treatment induces apoptosis in the HCT116 cells and the A549 cells, but not in the MCF-7 cells. Interestingly, the MCF-7 cells responded to the NaSal/genistein combined treatment by undergoing cell death when they were cultivated as MTS. The combined treatment induced apoptosis at an earlier stage in the MCF-7 MTS culture. However, when the MCF-7 MTS was cultivated for a longer period, it induced necrosis rather than apoptosis. We further found that the apoptotic pattern observed in MCF-7 MTS was incomplete: the chromatins were condensed and fragmented, but the nuclear membrane was still intact. Taken together, these results demonstrate that the NaSal/genistein combined treatment induces incomplete apoptosis and necrosis in the MCF-7 MTS culture system.

Cytokinetic Study of MCF-7 Cells Treated with Commercial and Recombinant Bromelain

  • Fouz, Nour;Amid, Azura;Hashim, Yumi Zuhanis Has-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6709-6714
    • /
    • 2013
  • Background: Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality. Materials and Methods: This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells. Results: Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with $IC_{50}$ values of 5.13 ${\mu}g/mL$ and 6.25 ${\mu}g/mL$, respectively, compared to taxol with an $IC_{50}$ value of 0.063 ${\mu}g/mL$. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 $h^{-1}$ to 0.0059 $h^{-1}$ for commercial bromelain and to 0.0063 $h^{-1}$ for recombinant bromelain. Conclusions: Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.

Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.10.1-10.7
    • /
    • 2012
  • Objectives: In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the antitumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. Methods: We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. Results: In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at $G_2$/M phase and of the sub-$G_1$ population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased $p21^{WAF1}$ expression. Conclusions: In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.

Effects of retinoic acid isomers on apoptosis and enzymatic antioxidant system in human breast cancer cells

  • Hong, Tae-Kyong;Lee-Kim, Yang-Cha
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • Retinoic acids (RAs) modulate growth, differentiation, and apoptosis in normal, pre-malignant & malignant cells. In the present study, the effects of RA isomers (all-trans RA, 13-cis RA, and 9-cis RA) on the cell signal transduction of human breast cancer cells have been studied. The relationship between RAs and an enzymatic antioxidant system was also determined. Estrogen-receptor (ER) positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cells were treated with different doses of each RA isomers, all-trans RA, 13-cis RA, or 9-cis RA. Treatment of RA isomers inhibited cell viability and induced apoptosis of MCF-7 cells as a result of increased caspase activity in cytoplasm and cytochrome C released from mitochondria. All-trans RA was the most effective RA isomer in both cell growth inhibition and induction of apoptosis in MCF-7 cells. However, no significant effect of RA isomers was observed on the cell growth or apoptosis in ER-negative MDA-MB-231 cells. In addition, activities of antioxidant enzymes such as catalase and glutathione peroxidase were decreased effectively after treatment of RA in MCF-7 cells, whereas SOD activity was rarely affected. Thus, the present data suggest that all-trans RA is the most potential inducer of apoptosis and modulator of antioxidant enzymes among RA isomers in MCF-7 human breast cancer cells.

Anticancer Activity of Petroselinum sativum Seed Extracts on MCF-7 Human Breast Cancer Cells

  • Farshori, Nida Nayyar;Al-Sheddi, Ebtesam Saad;Al-Oqail, Mai Mohammad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5719-5723
    • /
    • 2013
  • Pharmacological and preventive properties of Petroselinum sativum seed extracts are well known, but the anticancer activity of alcoholic extracts and oil of Petroselinum sativum seeds on human breast cancer cells have not been explored so far. Therefore, the present study was designed to investigate the cytotoxic activities of these extracts against MCF-7 cells. Cells were exposed to 10 to $1000{\mu}g/ml$ of alcoholic seed extract (PSA) and seed oil (PSO) of Petroselinum sativum for 24 h. Post-treatment, percent cell viability was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed that PSA and PSO significantly reduced cell viability, and altered the cellular morphology of MCF-7 cells in a concentration dependent manner. Concentrations of $50{\mu}g/ml$ and above of PSA and $100{\mu}g/ml$ and above of PSO were found to be cytotoxic in MCF-7 cells. Cell viability at 50, 100, 250, 500 and $1000{\mu}g/ml$ of PSA was recorded as 81%, 57%, 33%, 8% and 5%, respectively, whereas at 100, 250, 500, and $1000{\mu}g/ml$ of PSO values were 90%, 78%, 62%, and 8%, respectively by MTT assay. MCF-7 cells exposed to 250, 500 and $1000{\mu}g/ml$ of PSA and PSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment with PSA and PSO of Petroselinum sativum induced cell death in MCF-7 cells.

Docetaxel-loaded PLGA nanoparticles to increase pharmacological sensitivity in MDA-MB-231 and MCF-7 breast cancer cells

  • Tran, Phuong;Nguyen, Thu Nhan;Lee, Yeseul;Tran, Phan Nhan;Park, Jeong-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.479-488
    • /
    • 2021
  • This study aimed to develop docetaxel (DTX) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (DTX-NPs) and to evaluate the different pharmacological sensitivity of NPs to MCF-7 and MDA-MB-231 breast cancer cells. NPs containing DTX or coumarin-6 were prepared by the nanoprecipitation method using PLGA as a polymer and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a surfactant. The physicochemical properties of NPs were characterized. In vitro anticancer effect and cellular uptake were evaluated in breast cancer cells. The particle size and zeta potential of the DTX-NPs were 160.5 ± 3.0 nm and -26.7 ± 0.46 mV, respectively. The encapsulation efficiency and drug loading were 81.3 ± 1.85% and 10.6 ± 0.24%, respectively. The in vitro release of DTX from the DTX-NPs was sustained at pH 7.4 containing 0.5% Tween 80. The viability of MDA-MB-231 and MCF-7 cells with DTX-NPs was 37.5 ± 0.5% and 30.3 ± 1.13%, respectively. The IC50 values of DTX-NPs were 3.92- and 6.75-fold lower than that of DTX for MDA-MB-231 cells and MCF-7 cells, respectively. The cellular uptake of coumarin-6-loaded PLGA-NPs in MCF-7 cells was significantly higher than that in MDA-MB-231 cells. The pharmacological sensitivity in breast cancer cells was higher on MCF-7 cells than on MDA-MB-231 cells. In conclusion, we successfully developed DTX-NPs that showed a great potential for the controlled release of DTX. DTX-NPs are an effective formulation for improving anticancer effect in breast cancer cells.