• Title/Summary/Keyword: MCF7 cells

Search Result 749, Processing Time 0.033 seconds

Cytotoxicity on Cancer cells of the Extract of Sophora flavescens Ait. (고삼 추출물의 암세포에 대한 세포독성)

  • Lee, Hyun-Ok;Chun, Ju-Yeon;Lee, Ji-Youn;Kim, Chang-Hee
    • Journal of dental hygiene science
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • In this study, we investigated the cytotoxicity of ethyl acetate subfraction of Sophora flavescens Ait.(EASS) on cancer cells using MTT quantitative analysis. The EASS was cytotoxicity from the concentration of 6.25 g/ml to KB, B16, HeLa, and MCF-7 cancer cells and the cytotoxicity was significant, (p < 005) increased as the concentrations of EASS were increased, (12.5, 25, 50, 100 g/ml). The IC for KB, B16, HeLa, and MCF-7 were 56.58, 65.43, 83.95, and 106.65 g/ml, respectively. Conclusively, the EASS inhabited the growth of cancer cells and the order of potency of cytotoxicity was KB > B16 > HeLa > MCF-7.

  • PDF

Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells

  • Yang, Seoyeon;Lee, Ji-Yeon;Hur, Ho;Oh, Ji Hoon;Kim, Myoung Hee
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.450-455
    • /
    • 2018
  • Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

Luteolin Inhibits Proliferation Induced by IGF-1 Pathway Dependent ERα in Human Breast Cancer MCF-7 Cells

  • Wang, Li-Meng;Xie, Kun-Peng;Huo, Hong-Nan;Shang, Fei;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1431-1437
    • /
    • 2012
  • The growth of many breast tumors is stimulated by IGF-1, which activates signal transduction pathways inducing cell proliferation. $ER{\alpha}$ is important in this process. The aim of the study was to investigate relationships in vitro among inhibitory effects of luteolin on the growth of MCF-7 cells, IGF-1 pathway and $ER{\alpha}$. Our results showed that luteolin could effectively block IGF-l-stimulated MCF-7 cell proliferation in a dose- and time-dependent manner and block cell cycle progression and induce apoptosis evidenced by the flow cytometric detection of sub-G1DNA content. Luteolin markedly decreased IGF-l-dependent IGF-IR and Akt phosphorylation without affecting Erk1/2 phosphorylation. Further experiments pointed out that $ER{\alpha}$ was directly involved in IGF-l induced cell growth inhibitory effects of luteolin, which significantly decreased $ER{\alpha}$ expression. Knockdown of $ER{\alpha}$ in MCF-7 cells by an $ER{\alpha}$-specific siRNA decreased the IGF-l induced cell growth inhibitory effects of luteolin. $ER{\alpha}$ is thus a possible target of luteolin. These findings indicate that the inhibitory effect of luteolin on the growth of MCF-7 cells is via inhibiting IGF-l mediated PI3K-Akt pathway dependent of $ER{\alpha}$ expression.

Antitumor Effect of Hang-Am-Dan (HAD) and its Ingredients on Calu6 and MCF-7 Human Cancer Cell Lines (항암단 및 그 주요 성분의 Calu6와 MCF-7 사람 암세포주에 대한 항암효과)

  • Lee, Dong-Eun;Lee, So-Young;Kim, Jung-Sun;Cho, Chong-Kwan;Yoo, Hwa-Seung;Choi, Sun-Ju
    • The Journal of Korean Medicine
    • /
    • v.30 no.5
    • /
    • pp.50-60
    • /
    • 2009
  • Objectives: To elucidate the antitumor activities of Hang-Am-Dan (HAD), we investigated the anti-proliferative effects and related mechanisms of HAD, the main ingredients such as Cordyceps Militaris and Santisigu Tuber, and its main effective components cordycepin and colchicin, respectively. Methods: We cultivated Calu6 and MCF-7 cells and gave them phosphate-buffered saline extracts of HAD, each ingredient of HAD, and the main effective components of each ingredient. After these processes, we performed MTT assay, BrdU assay, TUNEL assay, SDS-PAGE and Western blot analysis and observed the results. Results: The survival rate of these two cancer cells in HAD were 34-38%. The survival rate in extract of Cordyceps militaris (ECM) and extract of Santisigu tuber (EST) were both about 50%. Cordycepin showed decreased survival rate in both cancer cells, 32% and 89%. Colchicin also showed decreased survival rate, 30% and 16%. We observed that all of the cancer cells got apoptotic bodies after adding the extracts and they have more apoptotic bodies when they were exposed to more extracts. The expression of caspase-3 was increased in Calu6 cell lines treated with the ECM, cordycepin and colchicin. The expression of p53 and p21 were increased in the MCF-7 cell lines treated with the ECM and cordycepin. Conclusions: HAD showed cytotoxic activities on the two kinds of human cancer cell lines, Calu6 and MCF-7. Additionally, HAD and its main ingredients caused a dose-dependent inhibition of cell proliferation and induced the apoptotic cell death.

  • PDF

Anti-proliferation effect of Gyulyupsanbyonbang extracts on MCF-7 cells (귤엽산변방(橘葉散變方)이 유방암 세포주 MCF-7 생장 억제에 미치는 영향)

  • Yang, Seong-Jung;Cho, Seong-Hee;Cho, Su-In;Jo, Huyn-Jung
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.1
    • /
    • pp.50-60
    • /
    • 2007
  • Purpose : This investigation was undertaken to evaluate the anti-proliferation, in hexane, chloroform, ethyl acetate, butanol and water fraction from extract of Gyulyupsanbyonbang(GYSB) using MCF-7 human breast cancer cells. Methods : GYSB was added to distilled water(1500ml) and was boiled then filtered. The residue was suspended in distilled water and extracted with hexane, chloroform, ethyl acetate, butanol and water. MCF-7 cells were cultured in RPMI1640 complex badge, NIH3T3 was cultered in 37$^{\circ}$C, 5% moisture incubator of carbon dioxide with Dulbecco's Modified Eagle Medium(DMEM) supplemented with 10% fetal bovine serum and antibiotics. Cell cytotoxicity test about cancer cell was measured used MTT assay. Results: When it synthesizes a result, hexane and butanol fraction had shown anti-proliferation effect and safety together, and those anti-proliferation effect operating selectively appeared. Ethyl acetate fraction had anti-proliferation effect however, it was not selective. The Chloroform and water soluble fraction did not almost appear anti-proliferation effect. Conclusion : I can conclude that GYSB have anti-proliferation effect and safety together on MCF-7 cells. It suggest that GYSB may be useful for brest cancer patients.

  • PDF

High Levels of Hyaluronic Acid Synthase-2 Mediate NRF2-Driven Chemoresistance in Breast Cancer Cells

  • Choi, Bo-Hyun;Ryoo, Ingeun;Sim, Kyeong Hwa;Ahn, Hyeon-jin;Lee, Youn Ju;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.368-379
    • /
    • 2022
  • Hyaluronic acid (HA), a ligand of CD44, accumulates in some types of tumors and is responsible for tumor progression. The nuclear factor erythroid 2-like 2 (NRF2) regulates cytoprotective genes and drug transporters, which promotes therapy resistance in tumors. Previously, we showed that high levels of CD44 are associated with NRF2 activation in cancer stem like-cells. Herein, we demonstrate that HA production was increased in doxorubicin-resistant breast cancer MCF7 cells (MCF7-DR) via the upregulation of HA synthase-2 (HAS2). HA incubation increased NRF2, aldo-keto reductase 1C1 (AKR1C1), and multidrug resistance gene 1 (MDR1) levels. Silencing of HAS2 or CD44 suppressed NRF2 signaling in MCF7-DR, which was accompanied by increased doxorubicin sensitivity. The treatment with a HAS2 inhibitor, 4-methylumbelliferone (4-MU), decreased NRF2, AKR1C1, and MDR1 levels in MCF7-DR. Subsequently, 4-MU treatment inhibited sphere formation and doxorubicin resistance in MCF7-DR. The Cancer Genome Atlas (TCGA) data analysis across 32 types of tumors indicates the amplification of HAS2 gene is a common genetic alteration and is negatively correlated with the overall survival rate. In addition, high HAS2 mRNA levels are associated with increased NRF2 signaling and poor clinical outcome in breast cancer patients. Collectively, these indicate that HAS2 elevation contributes to chemoresistance and sphere formation capacity of drug-resistant MCF7 cells by activating CD44/NRF2 signaling, suggesting a potential benefit of HAS2 inhibition.

Microarray and Quantitative PCR Analysis of Gene Expression Profiles in Response to Treatment with Tomato Leaf Extract in MCF-7 Breast Cancer Cells

  • Amid, Azura;Chik, Wan Dalila Wan;Jamal, Parveen;Hashim, Yumi Zuhanis Has-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6319-6325
    • /
    • 2012
  • We previously found cytotoxic effects of tomato leaf extract (TLE) on the MCF-7 breast cancer cell line. The aim of this study was to ascertain the molecular mechanisms associated with the usage of TLE as an anticancer agent by microarray analysis using mRNA from MCF-7 breast cancer cells after treatment with TLE for 1 hr and 48 hrs. Approximately 991 genes out of the 30,000 genes in the human genome were significantly (p<0.05) changed after the treatment. Within this gene set, 88 were significantly changed between the TLE treated cells and the untreated MCF-7 cells (control cells) with a cut-off fold change >2.00. In order to focus on genes that were involved in cancer cell growth, only twenty-nine genes were selected, either down-regulated or up-regulated after treatment with TLE. Microarray assay results were confirmed by analyzing 10 of the most up and down regulated genes related to cancer cells progression using real-time PCR. Treatment with TLE induced significant up-regulation in the expression of the CRYAB, PIM1, BTG1, CYR61, HIF1-${\alpha}$ and CEBP-${\beta}$ genes after 1 hr and 48 hrs, whereas the TXNIP and THBS1 genes were up-regulated after 1 hr of treatment but down-regulated after 48 hrs. In addition both the HMG1L1 and HIST2H3D genes were down-regulated after 1 hr and 48 hrs of treatment. These results demonstrate the potent activity of TLE as an anticancer agent.