• Title/Summary/Keyword: MCF-

Search Result 1,083, Processing Time 0.027 seconds

HOXB5 Directly Regulates the Expression of IL-6 in MCF7 Breast Cancer Cells

  • Kim, Jie Min;Lee, Ji-Yeon;Kim, Myoung Hee
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.272-276
    • /
    • 2017
  • HOX genes are transcription factors that play important roles in body patterning and cell fate specification during normal development. In previous study, we found aberrant overexpression of HOXB5 in breast cancer tissues and cell lines, and demonstrated that HOXB5 is important in regulation of cell proliferation, tamoxifen resistance, and invasiveness through the epithelial-mesenchymal transition (EMT). Although the relationship between HOXB5 and phenotypic changes in MCF7 breast cancer cells has been studied, the molecular function of HOXB5 as a transcription factor remains unclear. IL-6 has been reported to be involved in not only inflammation but also cancer progression, which is characterized by the increase of growth speed and invasiveness of tumor cells. In this study, we selected Interleukin-6 (IL-6) as HOXB5 putative downstream target gene and discovered that HOXB5 transcriptionally up-regulated the expression of IL-6 in HOXB5 overexpressing MCF7 cells. The upstream region (~1.2 kb) of IL-6 promoter turned out to contain several putative HOX consensus binding sites. Chromatin immunoprecipitation assay confirmed that HOXB5 directly binds to the promoter region of IL-6 and positively regulated the expression of IL-6. These data all together, indicate that HOXB5 promotes IL-6 transcription by actively binding to the putative binding sites located in the upstream region of IL-6, which enable to increase its promoter activity in MCF7 breast cancer cells.

Protein tyrosine phosphatase controls breast cancer invasion through the expression of matrix metalloproteinase-9

  • Hwang, Bo-Mi;Chae, Hee Suk;Jeong, Young-Ju;Lee, Young-Rae;Noh, Eun-Mi;Youn, Hyun Zo;Jung, Sung Hoo;Yu, Hong-Nu;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.533-538
    • /
    • 2013
  • The expression of matrix metalloproteinases (MMPs) produced by cancer cells has been associated with the high potential of metastasis in several human carcinomas, including breast cancer. Several pieces of evidence demonstrate that protein tyrosine phosphatases (PTP) have functions that promote cell migration and metastasis in breast cancer. We analyzed whether PTP inhibitor might control breast cancer invasion through MMP expression. Herein, we investigate the effect of 4-hydroxy- 3,3-dimethyl-2H benzo[g]indole-2,5(3H)-dione (BVT948), a novel PTP inhibitor, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. The expression of MMP-9 and cell invasion increased after TPA treatment, whereas TPA-induced MMP-9 expression and cell invasion were decreased by BVT948 pretreatment. Also, BVT948 suppressed NF-${\kappa}B$ activation in TPA-treated MCF-7 cells. However, BVT948 didn't block TPA-induced AP-1 activation in MCF-7 cells. Our results suggest that the PTP inhibitor blocks breast cancer invasion via suppression of the expression of MMP-9.

Increased Sensitivity of ras-transformed Cells to Capsaicin-induced Apoptosis

  • Kang, Hye-Jung;Yunjo Soh;Kim, Mi-Sung;Lee, Eun-Jung;Surh, Young-Joon;Kim, Seung-Hee;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.107-107
    • /
    • 2001
  • During the last decade, enormous progress has been made on the biological significance of apoptosis. Since ras is among the most central molecule in signaling, we asked if ras regulates apoptotic pathway. We have previously shown that H-ras, but not N-ras, induces an invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In this study, we wished to seek a chemopreventive agent that effectively induces apoptosis in H-ras-activated cells. Here we show that capsaicin, the major pungent phytochemical in red pepper, induces caspase 3-involved apoptosis selectively in H-ras activated MCF10A cells while the parental MCF10A cells are not effected. In order to study the molecular mechanisms for the increased sensitivity of H-ras MCF10A cells to capsaicin-induced apoptosis, activation of ras downstream signaling molecules, mitogen-activated protein kinases (MAPKinases), upon capsaicin treatment was investigated. Phosphorylated forms of JNK1 and p38 MAPKinase were prominently increased whereas activated ERK-1/2 was decreased by capsaicin in ras-activated cells. The parental cells did not respond to capsaicin, suggesting that capsaicin selectively induces apoptosis through modulating activities of ras downstream signaling molecules in H-ras-activated cells. Studies using chemical inhibitors (CPT-cAMP, SB203580 and PD98059) and dominant negative constructs of JNKl, p38 and MEK show that activation of JNK1 and p38 MAPKinase, but not ERK-1/2, is critical for ras-mediated apoptosis by capsaicin.

  • PDF

Screening for in vitro Cytotoxic Activity of Seaweed, Sargassum sp. Against Hep-2 and MCF-7 Cancer Cell Lines

  • Mary, J. Stella;Vinotha, P.;Pradeep, Andrew M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6073-6076
    • /
    • 2012
  • Discovery of anticancer drugs that kill or disable tumor cells in the presence of normal cells without undue toxicity is a potential challenge for therapeutic care. Several papers in the literature have emphasized the potential implications of marine products such as seaweeds which exhibit antitumor activity. Study attempts to screen the antitumor effect of Sargassum sp, against chosen cell lines such as MCF-7 (Breast cancer) and Hep-2 (Liver Cancer). Ethanol extract of Sargassum sp. was concentrated using a Soxhlet apparatus and dissolved in DMSO. In vitro cytotoxic activity of Sargassum sp at various concentrations ($100{\mu}g/ml-300{\mu}g/ml$) screened for antitumor effect against the chosen cell lines using MTT assay (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole). The study documented that the percentage of cell viability has been reduced with increased concentration, as evidenced by cell death. Sargassum sp extract shows potential cytotoxic activity ($P{\leq}0.05$) with $IC_{50}$ of $200{\mu}g/ml$ and $250{\mu}g/ml$ against Hep-2 and MCF-7 cell lines respectively. The ethanol fraction of Sargassum sp induced cell shrinkage, cell membrane blebbing and formation of apoptotic bodies with evidence of bioactive components as profound influencing factors for anti-tumor effects. Further research need to be explored for the successful application of Sargassum sp as a potent therapeutic tool against cancer.

Anti-Proliferation Effects of Benzimidazole Derivatives on HCT-116 Colon Cancer and MCF-7 Breast Cancer Cell Lines

  • Al-Douh, Mohammed Hadi;Sahib, Hayder B.;Osman, Hasnah;Hamid, Shafida Abd;Salhimi, Salizawati M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4075-4079
    • /
    • 2012
  • Benzimidazoles 1-4 were obtained using modified synthesis methods and studied for their ability to inhibit cell proliferation of colon cancer cell HCT-116 and breast cancer cell MCF-7 using MTT assays. In the HCT-116 cell line, benzimidazole 2 was found to have an $IC_{50}$ value of $16.2{\pm}3.85{\mu}g/mL$ and benzimidazole 1 a value of $28.5{\pm}2.91{\mu}g/mL$, while that for benzimidazole 4 was $24.08{\pm}0.31{\mu}g/mL$. In the MCF-7 cell line, benzimidazole 4 had an $IC_{50}$ value of $8.86{\pm}1.10{\mu}g/mL$, benzimidazole 2 a value of $30.29{\pm}6.39{\mu}g/mL$, and benzimidazole 1 a value of $31.2{\pm}4.49{\mu}g/mL$. Benzimidazole 3 exerted no cytotoxity in either of the cell lines, with $IC_{50}$ values $>50{\mu}g/mL$. The results suggest that benzimidazoles derivatives may have chemotherapeutic potential for treatment of both colon and breast cancers.

Overexpression of Hiwi Promotes Growth of Human Breast Cancer Cells

  • Wang, Da-Wei;Wang, Zhao-Hui;Wang, Ling-Ling;Song, Yang;Zhang, Gui-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7553-7558
    • /
    • 2014
  • The Piwi subfamily comprises two argonaute (Ago) family proteins, which are defined by the presence of PAZ and Piwi domains, with well known roles in RNA silencing. Hiwi, a human Piwi subfamily member, has been shown to play essential roles in stem cell self-renewal and gametogenesis. Recently, accumulating reports have indicated that abnormal hiwi expression is associated with poorer prognosis of multiple types of human cancers, including examples in the breast. However, little is known about details of the oncogenic role of hiwi in breast cancers. In present study, we confirmed overexpression of hiwi in breast cancer specimens and breast cancer cell lines at both mRNA and protein levels. Thus both RT-qPCR and Western blot data revealed significantly higher hiwi in intratumor than peritumor specimens, overexpression being associated with tumor size, lymph node metastasis and histological grade. Hiwi overexpression was also identified in breast cancer cell lines, MDA-MB-231 and MCF-7, and gain-of-function and loss-of-function strategies were adopted to identify the role of hiwi in the MCF-7 cell growth. Results demonstrated that hiwi expression in MCF-7 cells was significantly up- or down-regulated by the two strategies. We next evaluated the influence of hiwi overexpression or knockdown on the growth of breast cancer cells. Both cell count and colony formation assays confirmed promoting roles of hiwi in MCF-7 cells, which could be inhibited by hiwi specific blockage by siRNAs. In summary, the present study confirmed overexpression of hiwi in breast cancer specimens and breast cancer cell lines, and provided e vidence of promotion by hiwi of cell growth. The results imply an oncogenic role of hiwi in breast cancers.

Induction of p53-Dependent G1 Cell Cycle Arrest by Rhus verniciflua. Stokes Extract in Human Breast Carcinoma MCF-7 Cells (MCF-7 인체 유방암 세포에서 옻나무 추출물이 p53-Dependent G1 Cell Cycle에 미치는 영향)

  • Hong, Sang-hoon;Han, Min-ho;Choi, Yung-hyun;Park, Sang-eun
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • Objectives : In Korea, Rhus verniciflua Stokes (RVS) has been used in traditional medicine for various diseases such as back pain, syndromes of the blood system in women, gastrointestinal disease, and cancer. However, the molecular mechanisms of its anti-cancer activity have not been clearly elucidated yet. Methods : This study investigated the possible mechanisms by which RVS extract (RVE) exerts its anti-proliferative action in cultured human breast carcinoma MCF-7 cells. Results : Treatment with RVE in MCF-7 cells resulted in inhibition of cell viability through G1 arrest of the cell cycle and induction of apoptosis in a time- and concentration-dependent manner, as determined by MTT assay and flow cytometry analysis. The induction of G1 arrest by RVE treatment was associated with the inhibition of cyclin D1, cyclin-dependent kinase (Cdk) 2, retinoblastoma protein (pRB), and mouse double minute 2 (MDM2) expression. Moreover, RVE treatment concentration dependently increased the levels of tumor suppressor p53, which was associated with the marked induction of Cdk inhibitors such as p21 (Waf1/Cip1) and p27 (Kip1). However, the inhibition of p53 function by the wild-type p53-specific inhibitor, pifithrin-α, abolished the above-mentioned effects of RVE, showing that p53 was responsible for the cytotoxicity of RVE Conclusions : These data indicate that a molecular pathway involving p53-dependent G1 cell cycle arrest plays a pivotal role in the cellular response to RVE, and demonstrate the potential applications of RVE as an anti-cancer drug for breast cancer treatment.

Antiproliferative Evaluation and Apoptosis Induction in MCF-7 Cells by Ziziphus spina christi Leaf Extracts

  • Farmani, Fatemeh;Moein, Mahmoodreza;Amanzadeh, Amir;Kandelous, Hirsa Mostafapour;Ehsanpour, Zahra;Salimi, Mona
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.315-321
    • /
    • 2016
  • Background: Herbal medicine has becoming a potential source of treatment for different types of cancer including breast cancer. It has been shown that plants from the family Rhamnaceae possess anticancer activity. Objective: In this study, we determined the antiproliferative influence of Ziziphus spina christi- a species from this family- on the MCF-7 (human breast adenocarcinoma) cell line. Materials and Methods: The cytotoxicity of the total extract, ethanol, ethanol-aqueous (1:1) as well as aqueous fractions of Ziziphus spina christi leaves was evaluated through MTT assay against MCF-7 cell line. Cell cycle inhibition and apoptosis induction were assessed by flowcytometry cycle RNase/PI analysis and Annexin V-FLUOS, respectively. Apoptosis was also analyzed by immunoblotting assay. Results: Our results indicated that the ethanolic fraction had the lowest $IC_{50}$ value (0.02 mg/ml), induced cell cycle arrest at the G1/S phase as well as apoptosis after a 48h of treatment. Conclusions: This is the first report on anticancer effect of Ziziphus spina christi ethanolic fraction on breast cancer cells, providing a scientific basis for its utility in traditional medicine. However, further in-depth studies are needed to confirm the precise mechanisms.

Anti Tumoral Properties of Punica Granatum (Pomegranate) Peel Extract on Different Human Cancer Cells

  • Modaeinama, Sina;Abasi, Mozhgan;Abbasi, Mehran Mesgari;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5697-5701
    • /
    • 2015
  • Background: Medicinal plants, especially examples rich in polyphenolic compounds, have been suggested to be chemopreventive on account of antioxidative properties. Punica granatum (PG) (pomegranate) is a well known fruit in this context, but its cytotoxicity in cancer cells has not been extensively studied. Here, we investigated the antiproliferative properties of a peel extract of PG from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate peel (PPE) was prepared. Total phenolic content(TPC) and total flavonoid conetnt (TFC) were determined by colorimetric assays. Antioxidant activity was determined by DPPH radical scavenging activity. The cytotoxicity of different doses of PPE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell cancer), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison with negative controls at all tested doses (5-$1000{\mu}g/ml$). In all studied cancer cells, PPE reduced the cell viability to values below 40%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, MCF-7 breast adenocarcinoma cells were the most responsive cells to antiprolifreative effects of PPE with a maximum mean growth inhibition of 81.0% vs. 69.4%, 79.3% and 77.5% in SKOV3, PC-3 and A549 cells, respectively. Conclusions: Low doses of PPE exert potent anti-proliferative effects in different human cancer cells and it seems that MCF-7 breast adenocarcinoma cells are the most cells and SKOV3 ovarian cancer cells the least responsive in this regard. However, the mechanisms of action need to be addressed.

Investigation of Antitumor Effects of Sorafenib and Lapatinib Alone and in Combination on MCF-7 Breast Cancer Cells

  • Kacan, Turgut;Altun, Ahmet;Altun, Gulsah Gultekin;Kacan, Selen Baloglu;Sarac, Bulent;Seker, Mehmet Metin;Bahceci, Aykut;Babacan, Nalan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3185-3189
    • /
    • 2014
  • Background: Breast cancer evolution and tumor progression are controlled by complex interactions between steroid receptors and growth factor receptor signaling. Aberrant growth factor receptor signaling can augment or suppress estrogen receptor function in hormone-dependent breast cancer cells. Thus, we aimed to investigate antitumor effects of sorafenib and lapatinib alone and in combination on MCF-7 breast cancer cells. Materials and Methods: Cytotoxicity of the sorafenib and lapatinib was tested in MCF-7 cells by XTT assays. 50, 25, 12.5 and $6.25{\mu}M$ concentrations of sorafenib and 200, 100, 50 and $25{\mu}M$ concentrations of lapatinib were administered alone and in combination. Results were evaluated as absorbance at 450nM and $IC_{50}$ values are calculated according to the absorbance data Results: Both sorafenib and lapatinib showed concentration dependent cytotoxic effects on MCF-7 cells. Sorafenib exerted cytotoxic effects with an $IC_{50}$ value of $32.0{\mu}M$; in contrast with lapatinib the $IC_{50}$ was $136.6{\mu}M$. When sorafenib and lapatinib combined, lapatinib increased cytotoxic effects of sorafenib at its ineffective concentrations. Also at the concentrations where both drugs had cytotoxic effects, combination show strong anticancer effects and killed approximately 70 percent of breast cancer cells. Conclusions: Combinations of tyrosine kinase inhibitors and cytotoxic agents or molecular targeted therapy has been successful for many types of cancer. The present study shows that both sorafenib and lapatinib alone are effective in the treatment of breast cancer. Also a combination of these two agents may be a promising therapeutic option in treatment of breast cancer.