• 제목/요약/키워드: MCAO

검색결과 140건 처리시간 0.022초

Neuroprotection by Valproic Acid in Mouse Models of Permanent and Transient Focal Cerebral Ischemia

  • Qian, Yong Ri;Lee, Mu-Jin;Hwang, Shi-Nae;Kook, Ji-Hyun;Kim, Jong-Keun;Bae, Choon-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권6호
    • /
    • pp.435-440
    • /
    • 2010
  • Valproic acid (VPA) is a well-known anti-epileptic and mood stabilizing drug. A growing number of reports demonstrate that VPA is neuroprotective against various insults. Despite intensive efforts to develop new therapeutics for stroke over the past two decades, all treatments have thus far failed to show clinical effect because of treatment-limiting side effects of the drugs. Therefore, a safety-validated drug like VPA would be an attractive candidate if it has neuroprotective effects against ischemic insults. The present study was undertaken to examine whether pre- and post-insult treatments with VPA protect against brain infarct and neurological deficits in mouse transient (tMCAO) and permanent middle cerebral artery occlusion (pMCAO) models. In the tMCAO (2 hr MCAO and 22 hr reperfusion) model, intraperitoneal injection of VPA (300 mg/kg, Lp.) 30 min prior to MCAO significantly reduced the infarct size and the neurological deficit. VPA treatment immediately after reperfusion significantly reduced the infarct size. The administration of VPA at 4 hr after reperfusion failed to reduce the infarct size and the neurological deficit. In the pM CAO model, treatment with VPA (300 mg/kg, i.p.) 30 min prior to MCAO significantly attenuated the infarct size, but did not affect the neurological deficit. Western blot analysis of acetylated H3 and H4 protein levels in extracts from the ischemic cortical area showed that treatment with VPA increased the expression of acetylated H3 and H4 at 2 hrs after MCAO. These results demonstrated that treatment with VPA prior to ischemia attenuated ischemic brain damage in both mice tMCAO and pMCAO models and treatment with VPA immediately after reperfusion reduced the infarct area in the tMCAO model. VPA could therefore be evaluated for clinical use in stroke patients.

백서의 중대뇌동맥 페쇄에 의한 국소 허혈성 뇌손상의 정도에 미치는 허혈 시간의 영향 (Influence of Ischemic Duration on Extent of Focal Ischemic Brain Injury Induced by Middle Cerebral Artery Occlusion in Rats)

  • 구희정;정경자;김명수;진창배
    • Biomolecules & Therapeutics
    • /
    • 제8권2호
    • /
    • pp.160-166
    • /
    • 2000
  • The present study examined influence of various ischemic duration on extent of focal ischemic brain injury induced by middle cerebral artery occlusion (MCAO) in rats. The MCAO was produced by insertion of a 17 mm silicone-coated 4-0 nylon surgical thread to the origin of MCA through the internal carotid artery for 30, 60, 90, 120 min (transient) or 24 hr (permanent) in male Sprague-Dawley rats under isoflurane anesthesia. Reperfusion in transient MCAO models was achieved by pulling the thread out of the internal carotid artery. Only rats showing neurological deficits characterized by left hemiparesis and/or circling to the left, were included in cerebral ischemic groups. The rats were sacrificed 24 hr after MCAO and seven serial coronal slices of the brain were stained with 2,3,5-triphenyltetrazolium chloride. Infarct size was measured using a computerized image analyzer. Ischemic damage was common in the frontoparietal cortex (somatosensory area) and the lateral segment of the striatum while damage to the medial segment of the striatum depended on the duration of the occlusion. In the 30-min MCAO grouts, however, infarcted region was primarily confined to the striatum and it was difficult to clearly delineate the region since there was mixed population of live and dead cells in the nucleus. Infarct volume was generally increased depending on the duration of MCAO, showing the most severe damage in the permanent MCAO group. However, there was no significant difference in infarct size between the 90-min and 120-min MCAO groups. % Edema also tended to increase depending on the duration of MCAO. The results suggest that the various focal ischemic rat models established in the present study can be used to evaluate in vivo neuroprotective activities of candidate compounds or to elucidate pathophysiological mechanisms of ischemic neuronal cell death.

  • PDF

Chlorogenic acid alleviates the reduction of Akt and Bad phosphorylation and of phospho-Bad and 14-3-3 binding in an animal model of stroke

  • Murad-Ali, Shah;Ju-Bin, Kang;Myeong-Ok, Kim;Phil-Ok, Koh
    • Journal of Veterinary Science
    • /
    • 제23권6호
    • /
    • pp.84.1-84.15
    • /
    • 2022
  • Background: Stroke is caused by disruption of blood supply and results in permanent disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects. Objectives: The purpose of this study was to investigate whether chlorogenic acid regulates the PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage. Methods: Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex was collected for Western blot and immunoprecipitation analyses. Results: MCAO damage caused severe neurobehavioral disorders and chlorogenic acid improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced histopathological changes and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was alleviated with administration of chlorogenic acid. The interaction between phospho-Bad and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and caspase-3 expression caused by MCAO damage. Conclusions: The results of the present study showed that chlorogenic acid activates phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-Bad and 14-3-3 in ischemic stroke model.

대승기탕(大承氣湯)이 중대뇌동맥 폐쇄 흰쥐의 신경세포 자연사에 미치는 영향 (Effect of Daeseungki-tang on Apoptotic Neuronal Cell Death of MCAO Rats)

  • 최은빈;김연섭
    • 동의생리병리학회지
    • /
    • 제22권2호
    • /
    • pp.403-409
    • /
    • 2008
  • In Oriental medicine daeseungki-tang is one of the prescription that is used clinically for constipation of paralytics. The objective of the study was to observe the effect of daeseungki-tang on apoptotic neuronal cell death. In the present study, middle cerebral artery occlusion(MCAO) rats were treated with daeseungi-tang for 5 days and the edema percentage of cerebral hemisphere of MCAO rats were investigated primary. Secondary, appearances of Bax, Bcl-2,-factors that is related to apoptotic neuronal cell death - and HSP72 in the brain of MCAO rats were investigated via immunohistochemistry. Daeseungki-tang significantly decreased edema percentage of the cerebral hemisphere of MCAO rats. Daeseungki-tang significantly decreased Bax positive cells, but did not change the apperances of Bcl-2 positive cells in the penumbra of the cerebral cortex and the caudoputamen of MCAO rats. Daeseungki-tang significantly decreased HSP72 positive cells in the penumbra of the cerebral cortex, but not in the caudoputamen of MCAO rats. Based on the present results, it can be suggested that treatment with daeseungki-tang may decrease edema of the cerebral hemisphere and restrain apoptotic neuronal cell death in the penumbra of the cerebral cortex.

조구등이 MCAO 모델 흰쥐에서 gliosis 억제에 미치는 영향 (The Effect of the Water Extract of Uncariae Ramulus et Uncus on Gliosis in the Middle Cerebral Artery Occlusion(MCAO) Rats)

  • 김상우;김선애;송봉근
    • 대한한방내과학회지
    • /
    • 제31권4호
    • /
    • pp.763-774
    • /
    • 2010
  • Objectives : In condition of brain infarction, irreversible axon damage occurs in central nerve system(CNS), because gliosis becomes physical and mechanical barrier to axonal regeneration. Reactive gliosis induced by ischemic injury such as middle cerebral artery occlusion is involved with up-regulation of GFAP and CD81. The current study is to examine the effect of the Uncariae Ramulus et Uncus on CD81 and GFAP expression in the rat brain following middle cerebral artery occlusion. Methods : In order to study ischemic injuries on brain, infarction was induced by middle cerebral artery occlusion(MCAO) using insertion of a single nylon thread, through the internal carotid artery, into a middle cerebral artery. Cresyl violet staining, cerebral infarction size measurement, immunohistochemistry and microscopic examination were used to detect the expression of CD81 and GFAP and the effect on the infarct size and pyramidal cell death in the brain of the rat with cerebral infarction induced by MCAO. Results : The following results were obtained 1. Measuring the size of cerebral infartion induced by MCAO in the rat after injection of Uncariae Ramulus et Uncus showed the size was decreased. 2. Intravenous injection of Uncariae Ramulus et Uncus showed pyramidal cell death protection in the hippocampus in the MCAO rat. 3. Water extract injection of Uncariae Ramulus et Uncus decreased GFAP expression significantly in the MCAO rat. 4. Uncariae Ramulus et Uncus water extract decreased CD81 expression in the MCAO rat. 5. The administration of water extract of Uncariae Ramulus et Uncus induced up-regulation of c-Fos expression significantly compared with MCAO. 6. The admistration of water extract of Uncariae Ramulus et Uncus increased ERK expression significantly compared with MCAO. Conclusion : We observed that Uncariae Ramulus et Uncus could suppress the reactive gliosis, which disturbs the axonal regeneration in the brain of the rat with cerebral infaction after MCAO by controlling the expression of CD81 and GFAP. The effect may be modulated by the up-regulation of c-Fos and ERK. These results suggest that Uncariae Ramulus et Uncus can be a candidate to regenerate CNS injury.

Effect of Chungpaesagan-tang on ischemic damage induced by MCAO in spontaneously hypertensive rats

  • Kim, Ko-Eun;Kim, Soo-Yong;Kim, Eun-Young;Kim, Bum-Hoi;Shin, Jung-Won;Lee, Hyun-Sam;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won
    • Advances in Traditional Medicine
    • /
    • 제8권4호
    • /
    • pp.430-439
    • /
    • 2008
  • Chungpaesagan-tang (CPSGT) is most frequently used to treat ischemic brain injury in tradition Korean medicine. Clinically, cerebral ischemia is likely to be accompanied by preexisting or complicating disease. However, animal models used to examine the effects of herbal medicines on cerebral ischemia have not given this issue sufficient consideration. The present study was undertaken to determine the effects of CPSGT on focal cerebral ischemia in normal and SHR rats subjected to transient middle cerebral artery occlusion (MCAO). Animals were divided into four groups: Normal (Sprague-Dawley) rats subjected to MACO (the NC+MCAO group), normal rats subjected to MCAO and then administered CPSGT (NC + MCAO + CP), SHR rats subjected to MCAO (SHR + MCAO), and SHR rats subjected to MCAO and then administered CPSGT (SHR + MCAO + CP). MCAO was performed using the intraluminal method. CPSGT was administrated orally twice (1 and 4 h) after MCAO. All animals were sacrificed at 24 h postoperatively. Brain tissues were stained with hematoxylin & eosin, to examine the effect of CPSGT on ischemic brain tissues. In addition, changes in TNF-$\alpha$ expression in ischemic areas were examined by immunostaining. CPSGT was found to significantly reduce infarction areas in normal and SHR rats and infarction volumes in SHR rats. Similarly, CPGST markedly increased neuron numbers and sizes in all treated groups, except cell sizes in SHRs. Furthermore, CPSGT reduced TNF-$\alpha$ expression in MCAO administered SHR rats. The findings of the present study suggest that CPSGT effectively ameliorates neuron damage caused by MACO-induced cerebral ischemia, and that it has a significant neuroprotective effect after cerebral ischemia in SHR.

성심산(醒心散)의 중대뇌동맥 폐쇄로 유발된 허혈성 뇌손상 백서(白鼠)에 대한 인지 및 운동기능 회복 촉진효과 (Sungshim-san-mediated Recovery of Cognition and Motor Function in the Severe Rat Stroke, Permanent Middle Cerebral Artery Occlusion Model)

  • 이경석;정대규
    • 동의신경정신과학회지
    • /
    • 제26권3호
    • /
    • pp.319-336
    • /
    • 2015
  • Objectives: The object of this study was to evaluate the cognition and motor function recovery effects of Sungshim-san (SSS), a traditional Korean cardio-protective polyherbal formula in the severe rat stroke, permanent middle cerebral artery occlusion (pMCAO) model. Methods: The experimental animals were divided into 6 groups. SSS aqueous extracts (yield=16.82%; 400, 200 and 100 mg/kg) were administered orally by using Sonde, once daily, for 28 continuous days from 24 hrs post-pMCAO. Donepezil 10 mg/kg, a representative drug for dementia, was used as a reference drug. The body weight changes, infarct/defect sizes, sensorimotor function and cognitive motor behavior were serially monitored. Limb placing and body-swing test for sensorimotor functions were conducted at 1 day before operation (base line), and 1, 3, 7, 14, 21 and 28 days post-pMCAO; and water maze test for the cognitive motor behavior was conducted at 14 and 28 days post-pMCAO, respectively. Results: Focal cerebral cortex infarct and defects due to pMCAO resulted in marked decreases of body weight, disorders of sensorimotor functions and cognitive motor behaviors. However, the pMCAO-related ischemic damages were markedly and dose-dependently inhibited by treatment with SSS 400 and 200 mg/kg, respectively. Donepezil markedly decreased the body weight and gains, as compared with pMCAO control rats; however, SSS 400 and 200 mg/kg favorably ameliorated the pMCAO-induced decreases in body weight and gains. SSS 100 mg/kg treated rats did not show any favorable effects on the pMCAO-related ischemic damages, as compared with pMCAO control rats. Conclusions: The results of the study indicated that oral administration of SSS 400 and 200 mg/kg accelerated cognition and motor function recovery in the rat pMCAO model. The treatment effect was potentially mediated by neuroprotection via the known augmentation of cerebral antioxidant defense system of SSS itself or its individual herbal components. Especially, the overall effects of SSS 200 mg/kg were similar to those of donepezil 10 mg/kg, but less toxic.

The Effects of Glutamate NMDA Receptor Antagonist MK-801 on Gastrointestinal Motility after Middle Cerebral Artery Occlusion in Rats

  • Ameer, Nasir Hussin;Lee, Jae-Hee;Choi, Myoung-Ae;Jin, Guang-Shi;Kim, Min-Sun;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.151-156
    • /
    • 2010
  • This study was performed to investigate the role of glutamate neurotransmitter system on gastrointestinal motility in a middle cerebral artery occlusion (MCAO) model of rats. The right middle cerebral artery was occluded by surgical operation, and intestinal transit and geometric center as a parameter of gastrointestinal motility and expression of c-Fos protein in the insular cortex and cingulate cortex were measured at 2 and 12 h after MCAO. Intestinal transit was $66.3{\pm}7.5%$ and $62.3{\pm}5.7%$ 2 and 12 h after sham operation, respectively, and MCAO significantly decreased intestinal transit to $39.0{\pm}3.5%$ and $47.0{\pm}5.1%$ at 2 and 12 h after the occlusion, respectively (p<0.01). The geometric center was $5.6{\pm}0.4$ and $5.2{\pm}0.9$ at 2 and 12 h after sham operation, respectively, and MCAO significantly decreased geometric center to $2.9{\pm}0.8$ and $3.0{\pm}0.3$ at 2 and 12 h after the occlusion, respectively (p<0.01). In control animals, injection of atropine decreased intestinal transit to $35.9{\pm}5.2%$, and injection of glutamate NMDA receptor antagonist, MK-801, decreased intestinal transit to $28.8{\pm}9.5%$. Pretreatment with MK-801, a glutamate NMDA receptor antagonist, in the MCAO group decreased intestinal transit to $11.8{\pm}3.2%$, which was significantly decreased compared to MCAO group (p<0.01). MCAO markedly increased the expression of c-Fos protein in the insular cortex and cingulate cortex ipsilateral to the occlusion 2 h after MCAO, and pretreatment with MK-801 produced marked reduction of c-Fos protein expression compared to MCAO group (p<0.01). These results suggest that modulation of gastrointestinal motility after MCAO might be partially mediated through a glutamate NMDA receptor system.

중풍 동물 모델에서의 트레드밀 운동이 허혈성 신경손상에 미치는 효과: 뇌혈관 통합성 강화 (The Effect of Treadmill Exercise on Ischemic Neuronal Injury in the Stroke Animal Model: Potentiation of Cerebral Vascular Integrity)

  • 강경아;성호현;진한별;박종민;이종민;전재용;김연정
    • 대한간호학회지
    • /
    • 제41권2호
    • /
    • pp.197-203
    • /
    • 2011
  • Purpose: This study was done to identify whether pre-conditioning exercise has neuroprotective effects against cerebral ischemia, through enhance brain microvascular integrity. Methods: Adult male Sprague-Dawley rats were randomly divided into four groups: 1) Normal (n=10); 2) Exercise (n=10); 3) Middle cerebral artery occlusion (MCAo), n=10); 4) Exercise+MCAo (n= 10). Both exercise groups ran on a treadmill at a speed of 15 m/min, 30 min/day for 4 weeks, then, MCAo was performed for 90 min. Brain infarction was measured by Nissl staining. Examination of the remaining neuronal cell after MCAo, and microvascular protein expression on the motor cortex, showed the expression of Neuronal Nuclei (NeuN), Vascular endothelial growth factor (VEGF) & laminin. Results: After 48 hr of MCAo, the infarct volume was significantly reduced in the Ex+MCAo group ($15.6{\pm}2.7%$) compared to the MCAo group ($44.9{\pm}3.8%$) (p<.05), and many neuronal cells were detected in the Ex+ MCAo group ($70.8{\pm}3.9%$) compared to the MCAo group ($43.4{\pm}5.1%$) (p<.05). The immunoreactivity of laminin, as a marker of microvessels and Vascular endothelial growth factor (VEGF) were intensively increased in the Ex+MCAo group compared to the MCAo group. Conclusion: These findings suggest that the neuroprotective effects of exercise pre-conditioning reduce ischemic brain injury through strengthening the microvascular integrity after cerebral ischemia.

Neuroprotective Effects of KC0244, a Glycine Site Antagonist, in a Rat Model of Transient Focal Ischemia

  • Ku, Hee-Jung;Churlmin Seong;Park, No-Sang;Changbae Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.143-143
    • /
    • 1998
  • Antagonists acting at the glycine site of the NMDA receptor have been gaining safer alternatives for stroke therapy because they have few adverse effect competitive and noncompetitive NMDA antagonists. Therefore, the neuroprotect novel glycine site antagonist KC0244 were evaluated in a rat model of transient comparison with GV150526A in a developmental phase. Middle cerebral artery oc was produced by insertion of a silicone-coated 4-0 nylon monofilament to the o in male Sprague-Dawley rats under isoflurane anesthesia. After 90 or 120 min retracted and the ischemic tissue reperfused. In 90-min MCAO model, GV150526A was administered 30 min before MCAO or immediately after MCAO. In 120-min MC KC0244 or GV150526A (10 mg/kg, i.p.) was administered 1 hr before MCAO or imme MCAO. Infarct volume was measured 24 hr after MCAO using the 2,3,5-triphe chloride staining method. In 90-min MCAO model, treatments with GV1505 significantly reduce infarct volume although they tended to slightly reduce cor approximately 19% compared with the nontreated group. In 120-min MCAO model with GV150526A did not either significantly reduce infarct volume although the reduce total infarct volume by approximately 16% compared with the vehicle-tre However, 1-hr preischemic and immediate treatments with KC0244 reduced total i 39 and 30% (corrected total infarct volume by 44 and 32%), respectively, co vehicle-treated control group. The results suggest that KC0244 can provid against transient focal ischemic damage with greater in vivo potency than GV150

  • PDF