• Title/Summary/Keyword: MC3T3-E1 cell

Search Result 162, Processing Time 0.029 seconds

Culture of osteoblast on polyelectrolyte complexes (PECs) composed of polysaccharides

  • Teramoto, Akira;Abe, Koji
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.41-42
    • /
    • 2003
  • Osteoblasts (MC3T3-E1) were cultured on polysaccharide type polyelectrolyte complex (PEC). The growth of the MC3T3-E1 on the PEC with carbxyl group (c-type) was slightly suppressed and exhibited aggregation morphology. On the other hand, cell growth on the PEC with sulfate group (s-type) was enhanced and the cell exhibited spreading form. Differentiation markers of osteoblast (ALPase activity, calcification, expression of osteocalsin) were enhanced and localized around cell aggregates on c-type PECs. These results suggest that PEC has the ability to control osteoblast proliferation and differentiation.

  • PDF

Effect of Safflower and Safflower Seed Extract on Osteogenic Differentiation of MC3T3E1 Cells (홍화, 홍화씨 추출물이 MC3T3E1 세포의 골분화 과정에 미치는 영향)

  • Yu, Sung-ryul;Shin, Seon-mi
    • The Journal of Internal Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.518-526
    • /
    • 2015
  • Objectives This study investigated the effect of purified safflower (Carthamus tinctorius Linne) and safflower seed (Carthamus tinctorius L. seed; CS) extract, using hot water and ethanol extract methods , on the osteogenic differentiation of MC3T3E1 cells.Methods The safflower and safflower seed were extracted with hot water and ethanol. The samples were concentrated by a rotary evaporator and then freeze-dried using a freeze-dryer. The MC3T3E1 cells were propagated and maintained in DMEM (Gibco) containing 10% FBS and a 1% antibiotic antimycotic solution. To induce osteogenic differentiation, the cells were treated for 14 days with DMEM with 10 mM β-glycerophosphate and 50 μM ascorbic acid. Extract doses were confirmed by the results of an MTT assay, and treatment of the extracts was performed in a differentiation medium every two days. The ALP staining and activity were tested after osteogenic differentiation for five days, and after 14 days, osteogenic differentiation was determined by alizarin red S staining. The mRNA expressions of osteogenic-related genes were quantified using quantitative real-time PCR.Results In the results of the MTT assay, all concentrations of safflower extracts had no toxicity in the MC3T3El cells. But in the groups of 100 ng/ml and 200 ng/ml concentrations of safflower seed extracts, the cell viability was significantly reduced by up to 40-50%. So we fixed the treatment concentration of the extract at 50 ng/ml. In the ALP and alizarin red S staining, all extract groups increased osteogenic differentiation compared with the control group. The water-safflower extract group showed the highest mRNA level of Alp, Runx2, and Dlx5 genes. The mRNA level of Ocn, an osteogenic gene related to late-stage differentiation, in the ethanol-safflower extract group increased the mineralization more significantly than in other groups.Conclusions These data suggest that the extract of safflower increases the osteoblastic differentiation activates of MC3T3E1 cells like the extract of safflower seed. The water-extract and ethanol-extract of safflower have effects on different stages of osteogenesis in MC3T3El. Not only safflower seed but also safflower will be useful therapeutic reagents for age-associated chronic diseases such as osteoporosis.

A study on the differentiation of MC3T3-E1 incubated on the layer-built silica/polycaprolactone non-woven fabric produced by electrospinning (전기방사법으로 제조된 실리카/폴리카프로락톤 적층형 부직포에 배양한 골아 세포의 중식, 분화에 관한 연구)

  • AN, Min-Kuk;Kim, Kyoung-Hwa;Kim, Tae-II;Lee, Yong-Moo;Rhee, Sang-Hoon;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.115-124
    • /
    • 2007
  • Silica is known as a promising osteoconductive material, and polycaprolactone is a bioactive and degradable material. The purpose of this study was to monitor the differentiation of MC3T3-E1 cells cultured on the layer-built silica/poly caprolactone non-woven fabric produced by electrospinning. Non-woven fabric (silica, polycaprolactone, PSP, SPS) was made by electrospinning and they were inserted in the 48 well cell culture plate. MC3T3-E1 cells were prepared by subculture. Cells were seeded to each well $1{\times}10^5$ concentration per well. Dulbecco's modified eagle medium with 10% FBS and 1% antibiotic-antimycotic solution was used. Confocal laser scanning microscope was taken 4 hours after incubation (95% air. 5% $CO_2$, $37^{\circ}C$). Cell proliferation was monitored by spectrophotometer on 1, 7, 14 days, and the morphology of the growing cells was observed by field emission scanning electron microscope. To monitor the differentiation of osteoblasts on the materials, MC3T3-E1 cells were incubated in 48 well culture plate after seeding with the density of $1{\times}10^5$ concentration. Then ELISA kit & EIA kit were used on to assess osteocalcin and osteopontin expression respectively. The other conditions were the same as above. MC3T3-E1 cells were proliferated well on all of the materials. There were no statistical differences among them. The osteopontin expression of silica, PSP, SPS was significantly higher than other groups on day 3 (p/0,05), but after that time, there were no statistically signigicant differences. The osteocalcin expression was significantly higher in silica and PSP than other groups on day 14. These findings show that PSP was as good as silica on the effect of osteoblast differentiation. The PSP non-woven fabric may have the possibility as bone graft materials.

THE EFFECT OF SODIUM FLUORIDE AND SODIUM ORTHOVANADATE ON OSTEOBLASTIC CELL LINE MC3T3-E1 CELLS (Sodium fluoride와 Sodium orthovanadate가 조골세포주 MC3T3-E1에 미치는 영향에 관한 연구)

  • Kim, Won-Jin;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.21 no.1 s.33
    • /
    • pp.97-111
    • /
    • 1991
  • It is the aim of this study to investigate the effects of sodium fluoride and sodium orthovanadate upon the proliferation and activity of the osteoblast (MC3T3-E1 cells). MC3T3-E1 cells were cultured in $\alpha-MEM$ containing $10\%$ FBS and various concentration of sodium fluoride and sodium orthovanadate was appended to serum free media. DNA synthesis was examined through the $[^3H]$ thymidine incorporation into DNA. Collagen synthesis was examined through the $[^3H]$ proline incorporation into collagenase digestible protein and noncollagen protein. The following results were drawn; 1. Sodium fluoride stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M$ to $10{\mu}M$ (P < 0.005). 2. Sodium orthovanadate stimulated the DNA synthesis of osteoblast significantly in dose-dependent manner within the concentration from $2{\mu}M\;to\;8{\mu}M$, however showed diminution at $10{\mu}M$ (P < 0.001). 3. Sodium fluoride and sodium orthovanadate stimulated the percent collagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M$ to $10{\mu}M$ (P < 0.001). 4. Sodium fluoride and sodium orthovanadate stimulated the noncollagen synthesis of osteoblast significantly in dose-dependent manner within the concentration from $5{\mu}M\;to\;10{\mu}M$ (P < 0.001). In conclusion, sodium fluoride and sodium orthovanadate stimulate the proliferation and activity of osteoblast by stimulation of DNA synthesis and collagen and noncollagen synthesis in osteoblast.

  • PDF

Protective effect of Korean Red Ginseng against glucocorticoid-induced osteoporosis in vitro and in vivo

  • Kim, Jinhee;Lee, Hyejin;Kang, Ki Sung;Chun, Kwang-Hoon;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.46-53
    • /
    • 2015
  • Background: Glucocorticoids (GCs) are commonly used in many chemotherapeutic protocols and play an important role in the normal regulation of bone remodeling. However, the prolonged use of GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. In this study, effects of Korean Red Ginseng (KRG) on GC-treated murine osteoblastic MC3T3-E1 cells and a GC-induced osteoporosis mouse model were investigated. Methods: MC3T3-E1 cells were exposed to dexamethasone (Dex) with or without KRG and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Realtime polymerase chain reaction was performed to evaluate the apoptotic gene expression; osteogenic gene expression and alkaline phosphatase (ALP) activity were also measured. Western blotting was performed to evaluate the mitogen-activated protein kinase (MAPK) proteins. A GC-induced osteoporosis animal model was used for in vivo study. Results and conclusion: The MTT assay revealed that Korean Red Ginseng (KRG) prevents loss of cell viability caused by Dex-induced apoptosis in MC3T3E1 cells. Real-time polymerase chain reaction data showed that groups treated with both Dex and KRG exhibited lower mRNA levels of caspase-3 and -9, whereas the mRNA levels of Bcl2, IAPs, and XIAP increased. Moreover, groups treated with both Dex and KRG demonstrated increased mRNA levels of ALP, RUNX2, and bone morphogenic proteins as well as increased ALP activity in MC3T3-E1 cells, compared to cells treated with Dex only. In addition, KRG increased protein kinase B (AKT) phosphorylation and decreased c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, microcomputed tomography analysis of the femurs showed that GC implantation caused trabecular bone loss. However, a significant reduction of bone loss was observed in the KRG-treated group. These results suggest that the molecular mechanism of KRG in the GC-induced apoptosis may lead to the development of therapeutic strategies to prevent and/or delay osteoporosis.

Effect of Pine (Pinus densiflora) Needle Extracts on Synthesis of Collagen in Osteoblastic MC3T3-E1 Cells (적송잎 추출물이 조골세포의 collagen 합성에 미치는 영향)

  • Jeon, Min-Hee;Kim, Young-Kyoung;Park, Yong-Soo;Hwang, Hyun-Jung;Kim, Sung-Gu;Lee, Sang-Hyeon;Choi, In-Soon;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.607-613
    • /
    • 2010
  • Osteoporosis is a disease involving a decrease in bone mineral density and an increased risk of fractures. The MC3T3-E1 pre-osteoblastic cell line is a well-accepted model of osteogenesis in vitro. Pine needles have long been used as a traditional health-promoting medicinal food in Korea. In this study, MTT assay, the alkaline phosphatase (ALP) activity and collagen synthesis of osteoblast cells were investigated to determine the effects of pine needle extracts on cell proliferation and differentiation. Pine needle extracts were prepared using hexane, ethanol and water. The effects of the pine needle extracts were examined by comparing the results with those of commercial agents, such as proanthocyanidin. The MC3T3-E1 cells exposed to proanthocyanidin showed increased proliferation in a concentration-dependent manner. The cells exposed to the hexane extract showed a similar increase in proliferation to that observed with proanthocyanidin. The hexane extract showed the highest ALP activity. Moreover, a supplement of pine needle extracts induced collagen synthesis in MC3T3-E1 cells. The pine needle extract produced the highest level of collagen synthesis at concentrations of $10{\sim}50\;{\mu}g/ml$. These results indicate that pine needle extracts have an anabolic effect on bone by promoting osteoblastic differentiation, and may be used in the treatment of common metabolic bone diseases.

The Effects of Static Magnetic Field and Pulsed Electromagnetic Field on Alkaline Phosphatase and DNA synthetic Activity of ME3T3-E1 Cells (정자기장과 맥동전자기장이 MC3T3-E1 세포의 ALP 및 DNA 활성도에 미치는 영향)

  • Son, Jeong-Hee;Bae, Seong-Min;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.27 no.4 s.63
    • /
    • pp.623-632
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of magnetic field on cellular activity of MC3T3-E1 cells. The cellular activity was monitored by alkaline phosphatase and DNA synthetic activity in control, static magnetic field and pulsed electromagnetic field groups. A static magnetic field was applied to the cell by placing one, two, three, foue, and five samarium-cobalt magnets above and below each cell plate for 24hours per day. A pulsed electromagnetic field with a frequency of 100 herz was applied for 10 hours per day. After 10 days of magnetic field exposure, there were increase of alkaline phosphatase activity in static magnetic field groups consisted of one, two and three magnetic groups. Alkaline phosphatase activities were not significantly increased in four and five magnetic groups. Application of pulsed electromagnetic field did not result in significant increase in alkaline phosphatase activity compared to control. DNA synthetic activity in both static and pulsed electromagnetic field group were not significantly different from that in control group. The result of this study suggest that magnetic field could have effect on the metabolism of bone cells related to the cellular metabolic process.

  • PDF

Effects of Scutellaria radix Extract on Osteoblast Differentiation and Osteoclast Formation (황금 추출물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Shin, Jeong-Min;Park, Chan-Kyung;Shin, Eun-Ju;Jo, Tae-Hyung;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.674-679
    • /
    • 2008
  • Scutellaria radix (SR) has been utilized as a traditional medicine for a variety of diseases including Rheumatoid arthritis and its major flavonoids - baicalein, baicalin, and wogonin - have been reported to exert beneficial health effects, including anti-bacterial, anti-viral, anti-inflammatory, and free-radical scavenging. However, the mechanisms underlying this effect remain poorly understood. The principal objective of this study was to determine the effect of SR on osteoblast and osteoclast cells. SR extract was prepared using 70% ethanol solvent. Osteoblastic MC3T3-E1 cells and osteoclast precursor Raw 264.7 macrophage cells were utilized. SR extract increased MC3T3-E1 cell proliferation and stimulated alkaline phosphatase activity dose-dependently, 152.0% of the control at concentration $1{\mu}g/mL$. Additionally, SR extract ($1{\mu}g/mL$) stimulated Bone nodule formation activity in MC3T3-E1 cells, approximately 223.3% of the control, 20 days after the exposure. In addition, SR extract significantly reduced the number of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells from Raw 264.7 cells. In conclusion, SR extract stimulates the proliferation and bioactivities of boneforming osteoblasts, and inhibits the activities of bone-resorbing osteoclasts to a certain degree.

The Effects of Mechanical Stress on Alkaline Phosphatase Activity of MC3T3-E1 Cells (기계적 자극이 MC3T3-EI 세포의 Alkaline Phosphatase Activity에 미치는 영향)

  • BAE, Sung-Min;KYUNG, Hee-Moon;SUNG, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.291-299
    • /
    • 1996
  • Orthodontic force is a mechanical stress controlling both of tooth movement and skeletal growth. The mechanical stress stimulate bone cells that may exert some influence on bone remodeling. The purpose of this study was to evaluate the difference in cellular activity depending on mechanical stresses such as compressive and tensile force by determining the alkaline phosphatase(ALP) activity. A clonal osteogenic cell line MC3T3-E1 was seeded into a 24-well plate($2{\times}10^4/well$). At the confluent phase, a continuous compressive hydrostatic pressure($25g/cm^2$, $300g/cm^2$) and continuous tensile hydrostatic pressure($-25g/cm^2$, $-300g/cm^2$) were applied for 4, 6, 10, 14, 18, 20 days respectively by a diaphgragm pump. At the end of the stimulation period, cell layers were prepared for ALP activity assay. The ALP activity of the compressive group increased more than that of the tensile group at same force magnitude, whereas the cells responded to a similar pattern regardless of the type of mechanical stress The ALP activity of the compressive and tensile group turned into the level of the control group as the length of time increased. These results indicated that a mechanical stress may be more effective on cellular activity during active cellular proliferation and differentiation periods. The time to achieve maximum ALP activity was delayed as the mechanical stress increased in both the compressive and the tensile group. Accordingly, the magnitude of the stress rather than the type of mechanical stress may have more influence on cellular activity.

  • PDF