• Title/Summary/Keyword: MC3T3-E1 cell

Search Result 163, Processing Time 0.03 seconds

Chemical Constituents from Artemisia iwayomogi Increase the Function of Osteoblastic MC3T3-E1 Cells

  • Ding, Yan;Liang, Chun;Choi, Eun-Mi;Ra, Jeong-Chan;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • v.15 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Chemical investigation of the aerial parts of Artemisia iwayomogi has afforded five glycoside compounds. Their chemical structures were characterized by spectroscopic methods to be turpinionoside A (1), (Z)-3-hexenyl O-${\alpha}$-arabinopyranosyl-(1${\rightarrow}$6)-O-${\beta}$-D-glucopyranoside (2), (Z)-5'-hydroxyjasmone 5'-O-${\beta}$-Dglucopyranoside (3), (-)-syringaresinol-4-O-${\beta}$-D-glucopyranoside (4), and methyl 3,5-di-O-caffeoyl quinate (5). All of them were isolated for the first time from Artemisia species. The effect of compounds 1 - 5 on the function of osteoblastic MC3T3-E1 cells was examined by checking the cell viability, alkaline phosphatase (ALP) activity, collagen synthesis, and mineralization. Turpinionoside A (1) significantly increased the function of osteoblastic MC3T3-E1 cells. Cell viability, ALP activity, collagen synthesis, and mineralization were increased up to 117.2% (2 ${\mu}M$), 110.7% (0.4 ${\mu}M$), 156.0% (0.4 ${\mu}M$), and 143.0 % (2 ${\mu}M$), respectively.

Electrochemical Characteristics of Osteoblast Cultured Ti-Ta Alloy for Dental Implant (골아세포가 배양된 치과 임플란트용 Ti-Ta합금의 전기화학적 특성)

  • Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • Electrochemical behaviors of surface modified and MC3T3-E1 cell cultured Ti-30Ta alloys have been investigated using various electrochemical methods. The Ti alloys containing Ta were melted by using a vacuum furnace and then homogenized for 6 hrs at $1000^{\circ}C$. MC3T3-E1 cell culture was performed with MC3T3-E1 mouse osteoblasts for 2 days. The microstructures and corrosion resistance were measured using FE-SEM, XRD, EIS and potentiodynamic test in artificial saliva solution at $36.5{\pm}1^{\circ}C$. Ti-Ta alloy showed the martensite structure of ${\alpha}+{\beta}$ phase and micro-structure was changed from lamellar structure to needle-like structure as Ta content increased. Corrosion resistance increased as Ta content increased. Corrosion resistance of cell cultured Ti-Ta alloy increased predominantly in compared with non cell cultured Ti- Ta alloy due to inhibition of the dissolution of metal ion by covered cell. $R_p$ value of MC3T3-E1 cell cultured Ti-40 Ta alloy showed $1.60{\times}10^6{\Omega}cm^2$ which was higher than those of other Ti alloy. Polarization resistance of cell-cultured Ti-Ta alloy increased in compared with non-cell cultured Ti alloy.

Zinc Deficiency Decreased Alkaline Phosphatase Expression and Bone Matrix Ca Deposits in Osteoblast-like MC3T3-E1 Cells

  • Cho Young-Eon;Lomeda Ria-Ann R.;Kim Yang-Ha;Ryu Sang-Hoon;Choi Je-Yong;Kim Hyo-Jin;Beattie John H.;Kwun In-Sook
    • Nutritional Sciences
    • /
    • v.8 no.4
    • /
    • pp.242-249
    • /
    • 2005
  • It is well established that zinc plays an important role in bone metabolism and mineralization. The role of zinc in bone formation is well documented in animal models, but not much reported in cell models. In the present study, we evaluated zinc deficiency effects on osteoblastic cell proliferation, alkaline phosphatase activity and expression, and extracellular matrix bone nodule formation and bone-related gene expression in osteoblastic MC3T3-E1 cells. To deplete cellular zinc, chelexed-FBS and interpermeable zinc chelator TPEN were used. MC3T3-E1 cells were cultured in zinc concentration-dependent (0-15 ${\mu}M\;ZnCl_2$) and time-dependent (0-20 days) manners. MC3T3-E1 cell proliferation by MTT assay was increased as medium zinc level increased (p<0.05). Cellular Ca level and alkaline phosphatase activity were increased as medium zinc level increased (p<0.05). Alkaline phosphatase expression, a marker of commitment to the osteoblast lineage, measured by alkaline phosphatase staining was increased as medium zinc level increased. Extracellular calcium deposits measured by von Kossa staining for nodule formation also appeared higher in Zn+(15 ${\mu}M\;ZnCl_2$) than in Zn-(0 ${\mu}M\;ZnCl_2$). Bone formation marker genes, alkaline phosphatase and osteocalcin, were also expressed higher in Zn+ than in Zn-. The current work supports the beneficial effect of zinc on bone mineralization and bone-related gene expression. The results also promote further study as to the molecular mechanism of zinc deficiency for bone formation and thus facilitate to design preventive strategies for zinc-deficient bone diseases.

Effect of Sambucus sieboldiana Extract on the Cell Growth and Extracellular Matrix Formation in Osteoblast Cells

  • Kim, Jeongsun;Cho, Seon-Ho;Park, Jong-Tae;Yu, Sun-Kyoung;Kim, Su-Gwan;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • Sambucus sieboldiana (SS) is a member of the family Caprifoliaceae and has been recommended as a functional material because of its several bioactivities. Although numerous literatures are available on the pharmacological and biological activities, the biological activity of SS in bone regeneration process has not yet been well-defined. Therefore, in this study, the effect of SS was investigated in the proliferation and differentiation of MC3T3-E1 osteoblastic cell line. The treatment of SS did not significantly affect the cell proliferation in MC3T3-E1 cells. SS significantly accelerated the mineralization and significantly increased the expression of alkaline phosphatase (ALP) and osteocalcin (OC) mRNAs, compared to the control, in the differentiation of MC3T3-E1 cells. SS significantly accelerated the decrease of osteonectin (ON) mRNA expression as compared with the control in a time-dependent manner in the differentiation of MC3T3-E1 cells. These results suggest that the SS facilitate the osteoblast differentiation and mineralization in MC3T3-E1 osteoblastic cells. Therefore, there may be potential properties for development and clinical application of bone regeneration materials.

The Effect of IGF-1 on ALP Activity of MC3T3-E1 Cell (MC3T3-E1세포의 ALP activity에 대한 IGF-I의 영향)

  • Lee, Hu-Jung;Lee, Jae-Mok;Choi, Byung-Ju;Yu, Hyun-Mo;Shu, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.4
    • /
    • pp.669-684
    • /
    • 1997
  • Polypeptide growth factors belong to a class of potent biologic mediators which regulate cell differentiation, proliferation, migration and metabolism. IGF-I is polypeptides secreted by skeletal cells and is considered as regulators of bone formation. The purpose of this study is to evaluate the effects of IGF-I on bone nodule formation and alkaline phosphatase activity of MC3T3-E1 cells. MC3T3-E1 cells were seeded at $1{\times}10^4$ cells/well, $1{\times}10^5$ cells/well in alpha-modified Eagle medium containing 10% fetal bovine serum, 10 mM ${\beta}-glycerophosphate$ and $5O{\mu}g/ml$ of ascorbic acid. Before 48 hours of indicated time, medium were changed with serum free medium. After 24 hours, 0.1, 1, 10 ng/ml IGF-I were added to the cells and cultured for 3, 7, 14, 21, 28 days. And histochemical analysis was done and ALP activity was measured and was expressed as nmol/min/mg of protein. The bone nodule formation in MC3T3-E1 cells of IGF-I was seen at 21, 28 days, but there were no difference between control group and experimental groups. The ALP activity decreased when it is compare to control 2 group except for 1 ng/ml, 10 ng/ml IGF-I of 21-day-groups and 1 ng/ml IGF-I of 28-day-groups. Dose response effects of IGF-I of ALP activity in MC3T3-E1 cells were seen the highest ALP activity at 1ng/ml until 21days and the highest ALP activity at 10 ng/ml of 28 daygroups. The peak times were seen at 7-day group, 14-day group on control group and experimental group respectively, and 1 ng/ml group was the highest ALP activity, From the above results, IGF-I was not seen notable effect on bone nodule formation and decreased ALP activity of MC3T3-E1 cells but the use of IGF-I to mediate biological stimulation of MC3T3-E1 cells shows promise for future therapeutic application.

  • PDF

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

Insulin - Like Growth Factor-I Effects on the Proliferation and Bone Matrix Protein Gene Expression of MC3T3-E1 Cell (MC3T3-E1 세포증식 및 골기질 단백질 발현에 대한 인슐린유사성장인자-I의 효과)

  • Lee, Dong-Sik;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.389-405
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of IGF-I for DNA synthetic activity and the mRNA expression of bone matrix protein, type I collagen and osteopontin in prolifetation and differentiation of MC3T3-E1 cells. To evaluate DNA synthetic activity, cells were seeded at $2{\times}10^4cells/ml$ in 24 well plates and to evaluate mRNA of type I collagen and osteopontin cells were seeded at $5{\times}10^5cells/ml$ in 100mm culture dishes. These cells were cultured in alpha-minimum essential medium(${\alpha}-MEM$) containing 10% fetal bovine serum at $37^{\circ}C$, 5% $CO_2$ incubator. For DNA synthetic activity test 1, 10, 100ng/ml IGF-I were added to the cells which had been cultured for 3 days before 24 hours. For type I collagen mRNA expression 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 10 days and for osteopontin mRNA expression 0.1, 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 15, 20 days. Cell proliferaton was measured by the incorporation of [$^3H$]-thymidine into DNA and expression for type I collagen and osteopontin were measured by northern blot analysis. The results were as follows : DNA synthetic activity were generally higher in experimental group than control group. Expressions of type I collagen mRNA were higher at 5 day group and much lower at 10 day group in the control groups. In the experimental groups, mRNA expressions were slightly increased when 1 ng/ml IGF-I were added to 5 day group and decreased in all experimental 10 day groups. Expressions of osteopontin mRNA were higher at 20 day groups and lower at 15 day groups than the control groups. In the experimental groups, mRNA expressions were incereased when 0.1, 1 ng/ml IGF-I were added to 5 day group and in all the 15 day groups, but decreased when 0.1, 1, 10 ng/ml IGF-I were added to 20 day groups. IGF-I stimulated DNA synthetic activity of MC3T3-E1 cells during proliferation stage significantly, did not greatly changed effects on type I collagen mRNA expression and stimulated osteopontin mRNA expression at 15 day especially. In conclusion, we suggests that IGF-I have a tendency of stimulation effect of DNA synthetic activity but do not stimulate type I collagen mRNA in proliferation stage of MC3T3-E1 cell cultures, and stimulate osteopontin mRNA in differentiation stage of MC3T3-E1 cell cultures.

  • PDF

EFFECTS OF IPRIFLAVONE ON COLLAGEN SYNTHESIS OF OSTEOBLAST-LIKE CELLS(MC3T3-E1 CELL LINE) (Ipriflavone이 골 세포주(MC3T3-E1 cell line)의 Collagen합성에 미치는 영향)

  • Yang, Yun-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.4
    • /
    • pp.395-398
    • /
    • 1997
  • Ipriflavone(IP)은 골흡수 억제효과에 골형성 촉진효과를 지니는 약물로 보고되어 왔다. 이러한 IP의 특성때문에 골의 치유를 촉진시키기 위한 약물로서 구강외과 영역에서 쓰일 수도 있으리라 생각되었다. 이에 저자는 그동안 보고되어온 IP의 골 형성 촉진효과가 실제로 나타나는지를 확인하고 또한 어떤 농도에서 나타나는지를 알아보기위해 IP를 서로다른 농도로 하여 골세포주(MC3T3-El cell line)의 배지에 넣은후, 골 형성의 지표로 쓰일수있는 collagen합성정도를 보고자 하였으며 이 자료를 앞으로서 in vivo 동물실험 연구의 기초자료로 사용코자 하였다. 본 연구에서 IP의 골형성 촉진효과를 collagen 합성정도를 측정을 통해 확인하였고, 특히 IP이 $10^{-7}M$농도일때 현저한 collagen합성의 증가를 관찰 하였으며 앞으로의 동물실험등을 통해 구강외과 영역에서의 사용가능성에 대해 좀더 연구해 보고자 한다.

  • PDF

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.