• Title/Summary/Keyword: MAXIMUM STRENGTH

Search Result 3,770, Processing Time 0.034 seconds

Hysteresis performance of earthquake-damaged resilient RAC shear walls retrofitted with CFRP strips and steel plates

  • Jianwei Zhang;Siyuan Wang;Man Zhang;Yuping Sun;Hongwei Wang
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.357-376
    • /
    • 2024
  • In this paper, weakly bonded ultra-high-strength steel bars (UHSS) were used as longitudinal reinforcement in recycled aggregate concrete shear walls to achieve resilient performance. The study evaluated the repairability and hysteresis performance of shear walls before and after retrofitting. Quasi-static tests were performed on recycled aggregate concrete (RAC) and steel fiber reinforced recycled aggregate concrete (FRAC) shear walls to investigate the reparability of resilient shear walls when loaded to 1% drift ratio. Results showed that shear walls exhibited drift-hardening properties. The maximum residual drift ratio and residual crack width at 1% drift ratio were 0.107% and 0.01mm, respectively, which were within the repairable limits. Subsequently, shear walls were retrofitted with bonded X-shaped CFRP strips and steel plates wrapped at the bottom and retested. Except for a slight reduction in initial stiffness, earthquake-damaged resilient shear walls retrofitted with a composite method still had satisfactory hysteresis performance. A revised damage assessment index D, has been proposed to assess of damage degree. Moreover, finite-element analysis for the shear wall before and after retrofit retrofitting was established in OpenSees and verified with experimental results. The finite element results and test results were in good agreement. Finally, parametric analysis was performed.

Lifespan assessment of piezoelectric sensors under disposal condition of high-level nuclear waste repository

  • Changhee Park;Hyun-Joong Hwang;Chang-Ho Hong;Jin-Seop Kim;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.529-539
    • /
    • 2024
  • A high-level nuclear waste (HLW) repository is designed for the long-term disposal of high-level waste. Positioned at depths of 500-1000 meters, it offers an alternative to the insufficient storage space for spent fuels, providing a long-term solution. High-level waste emits heat and radiation, causing structural deterioration, including strength reduction and cracks. Therefore, the use of piezoelectric sensors for structural health monitoring is essential for evaluating the safety of the structure over time. Unlike other structures, the HLW repository restricts human access after the disposal of HLW, rendering sensor replacement impossible. Therefore, it is necessary to assess both the lifespan and suitability of sensors under the disposal conditions in the HLW repository. This study employed an accelerated life test (ALT) to assess the sensor's lifespan under disposal conditions. Failure modes, failure mechanisms, and operational limits were analyzed through accelerated stress test (AST). Additionally, the parameters of the Weibull life probability distribution and the Arrhenius accelerated life model were estimated through statistical methods, including the likelihood ratio test, maximum likelihood estimation, and hypothesis testing. Results confirmed that the sensor's lifespan decreases significantly with the increase in the temperature limit of the HLW repository. The findings of this study can be used for improving sensor lifespan through shielding, development of alternative sensors, or lifespan evaluation of alternative monitoring sensors.

Sorption of U(VI) on MX-80 bentonite, illite, shale and limestone in Na-Ca-Cl saline solutions

  • Zhiwei Zheng;Jianan Liu;Shinya Nagasaki;Tammy Yang (Tianxiao)
    • Nuclear Engineering and Technology
    • /
    • v.56 no.11
    • /
    • pp.4724-4733
    • /
    • 2024
  • Uranium (U) has been identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. In this study, the sorption of U(VI) was studied in Na-Ca-Cl solutions at ionic strengths = 0.1-6 mol/kgw (m) in a CO2 free environment at pHm (molal H+ concentration where pHm = - log mH+) = 4-9 for MX-80 bentonite, illite and Queenston shale and at pHm = 5-9 for limestone. U(VI) sorption on MX-80 bentonite increased with pHm from pHm = 4 to 6, then decreased with pHm until pHm = 7, and then increased again with pHm to pHm = 9. U(VI) sorption on illite increased with pHm reaching a maximum at pHm = 7, and then decreased with further increases in pHm. The sorption behavior of U(VI) on shale was similar to that of illite, but the extent of decrease in the sorption coefficient (Rd) value with pHm was slightly more pronounced for the shale than observed for sorption on illite at pHm > 7. U(VI) sorption on limestone increased with pHm up to pHm = 8 and then seemed to be constant at pHm = 8-9. U(VI) sorption on all four solids was independent of ionic strength (0.1-6.0 m). The 2 site protolysis non-electrostatic surface complexation and cation exchange model successfully simulated the sorption of U(VI) onto MX-80 and illite, and the optimized values of surface complexation constants were estimated.

Neutron attenuation performance of EPDM rubber with BN Nanoparticles/B2O3 composite and studying physical, thermal and mechanical properties

  • H.M. Eyssa;Nabila A. Maziad;Wagdy Kansouh;Wageeh Ramadan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.11
    • /
    • pp.4563-4577
    • /
    • 2024
  • The current study has focused on evolving materials with high attenuation performance and vigorous mechanical properties. Nano hexagonal boron nitride (h-BN) has been synthesized from boric acid and urea and then heated at a low temperature. XRD, SEM, EDX-mapping images, and FTIR investigated the nano h-BN synthesized and boron oxide (B2O3) milled. The new nanocomposites based on ethylene propylene diene rubber (EPDM), different concentrations of h-BN NPs, and B2O3 have been prepared. The physical, mechanical, and thermal properties and neutron attenuation behavior of nanocomposites were characterized. The shielding properties were determined by measuring the fast neutrons and total gamma-ray attenuation coefficients of the 239Pu-α-9Be neutron source. It was seen that adding a coupling agent (maleic anhydride) was appropriate for improving interfacial adhesions between EPDM chains and the nanofiller h-BN and B2O3 compared to EPDM unloaded. From the results, we observe that EPDM loaded with nano h-BN and nano h-BN/B2O3 was noticeably boosted over that of the unloaded EPDM for tensile strength (TS), EPDM/nano h-BN/B2O3 had a high TS at a concentration of 3 % h-BN/10 % B2O3 (42 %) compared with unloaded EPDM. Moreover, EPDM/3 % h-BN and EPDM/3 % h-BN/10 % B2O3 had the highest thermal stability until 490 ℃ compared to unloaded EPDM is stable at 350 ℃. Finally, the maximum macroscopic effective shielding behaviors and removal cross-section are estimated by incorporating h-BN 3 % into EPDM.

Functional Properties of Soy Protein Isolates Prepared from Defatted Soybean Meal (탈지대두박(脫脂大豆粕)에서 추출(抽出)한 분리대두단백(分離大豆蛋白)의 식품학적(食品學的) 성질(性質))

  • Byun, Si-Myung;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-130
    • /
    • 1977
  • A laboratory study was made to develop a simple and economic model method for the systematic determination of functional properties of 'Soy Protein Isolates (SPI)' prepared from defatted soybean meal. These are required to evaluate and to predict how SPI may behave in specific systems and such proteins can be used to simulate or replace conventional proteins. Data concerning the effects of pH, salt concentration, temperature, and protein concentration on the functional properties which include solubility, heat denaturation, gel forming capacity, emulsifying capacity, and foaming capacity are presented. The results are as follows: 1) The yield of SPI from defatted soybean meal increased to 83.9 % as the soybean meal was extracted with 0.02 N NaOH. 2) The suitable viscocity of a dope solution for spinning fiber was found to be 60 Poises by using syringe needle (0.3 mm) with 15 % SPI in 0.6 % NaOH. 3) Heat caused thickening and gelation in concentration of 8 % with a temperature threshold of $70^{\circ}C$. At $8{\sim}12\;%$ protein concentration, gel was formed within $10{\sim}30\;min$ at $70{\sim}100\;^{\circ}C$. It was, however, disrupted rapidly at $125\;^{\circ}C$ of overheat treatment. The gel was firm, resilient and self-supporting at protein concentration of 14 % and less susceptible to disruption of overheating. 4) The emulsifying capacity (EC) of SPI was correlated positively to the solubility of protein at ${\mu}=0$. At pH of the isoelectric point of SPI (pH 4.6), EC increased as concentration of sodium chloride increased. Using model system$(mixing\;speed:\;12,000\;r.p.m.,\;oil\;addition\;rate:\;0.9\;ml/sec,\;and\;temperature\;:\;20{\pm}1\;^{\circ}C)$, the maximum EC of SPI was found to be 47.2 ml of oil/100 mg protein, at the condition of pH 8.7 and ${\mu}=0.6$. The milk casein had greater EC than SPI at lower ionic strength while the EC of SPI was the same as milk casein at higher ionic strength. 5) The shaking test was used in determining the foam-ability of proteins. Progressively increasing SPI concentration up to 5 % indicated that the maximum protein concentration for foaming capacity was 2 %. Sucrose reduced foam expansion slightly but enhanced foam stability. The results of comparing milk casein and egg albumin were that foaming properties of SPI were the same as egg albumin, and better than milk casein, particularly in foam stability.

  • PDF

Evaluation of the Minimum Shear Reinforcement Ratio of Reinforced Concrete Members (철근콘크리트 부재의 최소전단보강근비의 평가)

  • Lee Jung-Yoon;Yoon Sung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.43-53
    • /
    • 2004
  • The current Korean Concrete Design Code(KCI Code) requires the minimum and maximum content of shear s in order to prevent brittle and noneconomic design. However, the required content of the steel reinforcement In KCI Code is quite different to those of the other design codes such as fib-code, Canadian Code, and Japanese Code. Furthermore, since the evaluation equations of the minimum and maximum shear reinforcement for the current KCI Code were based on the experimental results, the equations can not be used for the RC members beyond the experimental application limits. The concrete tensile strength, shear stress, crack inclination, strain perpendicular to the crack, and shear span ratio are strongly related to the lower and upper limits of shear reinforcement. In this research, an evaluation equation for the minimum content of shear reinforcement is theoretical proposed from the Wavier's three principals of the mechanics of materials.

Thermal and Mechanical Properties of Rapidly Solidified Zr-Ni-Cu-Al-Ti Alloy (급냉응고법으로 제조한 Zr-Ni-Cu-Al-Ti 합금의 열적, 기계적 성질)

  • Choe, Ik-Seok;Han, Tae-Gyo;Ji, Yong-Gwon;Im, Byeong-Mun;Kim, Yeong-Hwan;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.171-177
    • /
    • 2001
  • The thermal and mechanical properties of amorphous Z $r_{62-x}$N $i_{10}$C $u_{20}$A $l_{8}$ $Ti_{x}$ (x=3, 6, 9at%) alloys were investigated. The crystallization process was confirmed as amorphous longrightarrow amorphous + Z $r_2$A $l_3$+ Zr + (Ni,Ti) longrightarrow Z $r_2$Cu + Al + (Ni,Ti) for 3at%Ti, amorphous longrightarrow amorphous + Al longrightarrow $Al_2$Ti + NiZr + CuTi for 6at%Ti and amorphous longrightarrow amorphous + Zr + Al longrightarrow Zr + $Al_2$Zr + Al $Ti_3$+ CuTi for 9at%Ti. lickers hardness ( $H_{v}$ ) increased with increasing volume fraction( $V_{f}$ ) of pricipitates for all concerned compositions. Tensile fracture strength ($\sigma_{f}$ ) showed a maximum value 1219MPa at $V_{f}$ = 38% for 3at%Ti, 1203MPa at $V_{f}$ = 2% for 6at%Ti and 1350MPa at $V_{f}$ = 5% for 9at%Ti. The $\sigma_{f}$ was rapidly decreased after showing the maximum value. The $V_{f}$ corresponding to rapidly decreased $\sigma_{f}$ coincided with the $V_{f}$ transited from ductile to brittle fracture surface.ace.

  • PDF

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

The Effect of Moisture Content on the Compressive Properties of Korean Corn Kernel (함수율(含水率)이 옥수수립(粒)의 압축특성(壓縮特性)에 미치는 영향(影響))

  • Lee, Han Man;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.113-122
    • /
    • 1986
  • In order to promote mechanization of corn harvesting in Korea, this study was conducted to find out the effect of moisture content on compressive properties such as force, deformation, energy and modulus of stiffness to the bioyield and the rupture point for Korean corn kernel. In this study, the loading positions of corn were flat, edge, longitude and the moisture contents were about 13, 17, 21, 25% in wet basis. The compression test was carreied out with flat plate by use of dynamic straingage for three varieties of Korean corn under quasi-static force when the loading rate was 1.125mm/min. The results of this study are summarized as follows; 1. When the moisture content of corn ranged from 12.5 to 24.5 percent, at flat position, the bioyied force was in the range of 13.63-26.73 kg and the maximum compressive strength was in the range of 21.55-47.65kg. Their values were reached minimum at about 17% and maximum at about 21% moisture content. The bioyield force was in the range of 13.58-6.70kg at edge position and the maximum compressive strength which was 16.42 to 7.82kg at edge position was lower than that which was 18.55-9.05kg at longitudinal position. 2. Deformation of corn varied from 0.43 to 1.37 mm at bioyield point and from 0.70 to 2.66mm at rupture point between 12.5 to 24.5% moisture content. As the moisture content increased, deformation was increased. 3. The moduli of resilience and toughness of corn ranged from 2.60 to 8.57kg. mm and from 6.41 to 34.36kg. mm when the moisture content ranged from 12.5 to 24.5 percent, respectively. As the moisture content increased, the modulus of toughness was increased at edge position and decreased at longitudinal position. And their values were equal each other at 22-23% moisture content. 4. The modulus of stiffness was decreased with increase in the moisture content. Its values ranged from 32.07 to 5.86 kg/mm at edge position and from 42.12 to 18.68kg/mm at flat position, respectively. Also, the values of Suweon 19 were higher than those of Buyeo. 5. It was considered that the compressive properties of corn at flat position were more important on the design data for corn harvesting and processing machinery than those of edge or longitudinal position. Also, grinding energy would be minimized when a corn was processed between about 12.5 to 17% moisture content and corn damage would be reduced when a corn was handled between about 19 to 24% moisture content in wet basis.

  • PDF

Early Changes after Death of Plaice, Paralichthys olivaceus Muscle -6. Effect of Killing Methods on Morphological Changes of Myofibrills and Histological Changes of Muscle- (넙치 (Paralichthys olivaceus)육의 사후조기변화 -6. 치사 방법이 근원섬유의 형태학적 및 육의 조직학적인 변화에 미치는 영향-)

  • CHO Young-Je;LEE Nam-Geoul;KIM Yuck-Yong;KIM Jae-Hyun;LEE Keun-Woo;KIM Geon-Bae;CHOI Young-Joon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.327-334
    • /
    • 1994
  • This study was undertaken to clarify the effect of killing methods on the morphological and histological changes of plaice, Paralichthys olivaceus muscle at early stage after killing. Killed samples by the three different methods were stored at $5^{\circ}$, and the changes in breaking strength of muscle, morphological observation of myofibrils and histological observation of extracellular spaces through storage were monitored. Samples killed by electrifying in sea water showed the maximum value of breakin strength immediately after killing and then it dropped significantly(p<0.05) until 2.5hrs passed. Breaking strength of samples killed by spiking at the head instantly and dipping in sea water including anesthetic rose steadily over 10hrs and 15hrs after killing, respectively. In myofibrills prepared from dorsal muscles immediately after spiking at the head instantly, A-band, H-band, I-band, and Z-line in sarcomere were clearly distinguishable each other. Due to muscle contraction by electrical stimulation, it was impossible to distinguish H-band from I-band observed in sarcomere immediately after killing for samples killed by electrifying. But, in the cases of samples killed by spiking and dipping, H-band could be observed dimly until 10hrs and 15hrs storage. No extracellular space was observed among muscle cells immediately after spiking at the head instantly. Samples killed by spiking at the head instantly and dipping in sea water including anesthetic showed extracellular spaces among all muscle cells after 15hrs and 25hrs storage, respectively. The other hand, samples killed by electrifying in sea water (110V, 30sec.) showed a few extracellular spaces immediately after killing and then it showed extracellular spaces among all muscle cells after 2.5hrs storage.

  • PDF