DOI QR코드

DOI QR Code

Neutron attenuation performance of EPDM rubber with BN Nanoparticles/B2O3 composite and studying physical, thermal and mechanical properties

  • H.M. Eyssa (Radiation Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority) ;
  • Nabila A. Maziad (Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority) ;
  • Wagdy Kansouh (Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA)) ;
  • Wageeh Ramadan (Radiation Protection and Safety Department, Hot Labs. Centre, Egyptian Atomic Energy Authority (EAEA))
  • Received : 2024.01.30
  • Accepted : 2024.06.14
  • Published : 2024.11.25

Abstract

The current study has focused on evolving materials with high attenuation performance and vigorous mechanical properties. Nano hexagonal boron nitride (h-BN) has been synthesized from boric acid and urea and then heated at a low temperature. XRD, SEM, EDX-mapping images, and FTIR investigated the nano h-BN synthesized and boron oxide (B2O3) milled. The new nanocomposites based on ethylene propylene diene rubber (EPDM), different concentrations of h-BN NPs, and B2O3 have been prepared. The physical, mechanical, and thermal properties and neutron attenuation behavior of nanocomposites were characterized. The shielding properties were determined by measuring the fast neutrons and total gamma-ray attenuation coefficients of the 239Pu-α-9Be neutron source. It was seen that adding a coupling agent (maleic anhydride) was appropriate for improving interfacial adhesions between EPDM chains and the nanofiller h-BN and B2O3 compared to EPDM unloaded. From the results, we observe that EPDM loaded with nano h-BN and nano h-BN/B2O3 was noticeably boosted over that of the unloaded EPDM for tensile strength (TS), EPDM/nano h-BN/B2O3 had a high TS at a concentration of 3 % h-BN/10 % B2O3 (42 %) compared with unloaded EPDM. Moreover, EPDM/3 % h-BN and EPDM/3 % h-BN/10 % B2O3 had the highest thermal stability until 490 ℃ compared to unloaded EPDM is stable at 350 ℃. Finally, the maximum macroscopic effective shielding behaviors and removal cross-section are estimated by incorporating h-BN 3 % into EPDM.

Keywords

Acknowledgement

The authors are very grateful to Labs, for Developing Nuclear Techniques to Detect Landmines and Illicit Materials for his constructive debate and collaborative efforts in the experimental work. The authors thank Prof. Dr. Ahmed Abdelsalam, Metallurgy Dept., Nuclear Research Center, Egyptian Atomic Energy Authority, and Cairo, Egypt. To support and provide the muffle furnace used to prepare h-BN nanoparticles.

References

  1. A. Vertes, S.N. Nagy, Z. Klencsar, et al., Hand Book of Nuclear Chemistry, second ed., 2011. 
  2. L. Li, X. Chen, X. Liu, G. Zeng, G. Yang, Z. Li, Y. Jian, Stigation into impacts of neutron irradiation on PMOS dosimeter behaviors, Rad. Meas. 161 (2023) 106911. 
  3. M. Erdem, O. Baykara, M. Dogru, F. Kuluozturk, A novel shielding material prepared from solid waste containing lead for gamma ray, Rad. Phys. Chem. 79 (2010) 917-922.  https://doi.org/10.1016/j.radphyschem.2010.04.009
  4. M.Z. Botelho, R. Kunzel, E. Okuno, R.S. Levenhagen, T. Basegio, C.P. Bergmann, X-ray transmission through nanostructured and microstructured CuO materials, Appl. Radiat. Isot. 69 (2011) 527-530.  https://doi.org/10.1016/j.apradiso.2010.11.002
  5. R. Kunzel, E. Okuno, Effects of the particle sizes and concentrations on the X-ray absorption by CuO compounds, Appl. Radiat. Isot. 70 (2012) 781-784.  https://doi.org/10.1016/j.apradiso.2011.12.040
  6. H. Chai, X. Tang, M. Ni, F. Chen, Y. Zhang, D. Chen, Y. Qiu, Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber, J. Nucl. Mater. 464 (2015) 210-215.  https://doi.org/10.1016/j.jnucmat.2015.04.048
  7. Y. Sakurai, A. Sasaki, T. Kobayashi, Development of neutron shielding material using metathesis-polymer matrix, Nucl. Instrum. Methods Phys. Res. 522 (2004) 455-461.  https://doi.org/10.1016/j.nima.2003.11.420
  8. A.A.M. Yassene, N.R. Abd Elwahab, H.M. Eyssa, Development of HDPE/natural fiberboard nanocomposite reinforced Bi2O3/BaO and H3BO3: A sustainable approach for gamma and neutron shielding application, Polym. Eng. Sci. (2024), https://doi.org/10.1002/pen.26768. 
  9. S, .G. Irim, A.A. Wis, M.A. Keskin, O. Baykara, G. Ozkoc, A. Avci, M. Dogru, M. Karakoc, Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites, Radiat. Phys. Chem. 144 (2018) 434-443.  https://doi.org/10.1016/j.radphyschem.2017.10.007
  10. M. Yankowitz, J. Xue, B.J. LeRoy, Graphene on hexagonal boron nitride, J. Condens. Matter Phys. 26 (2014) 303201. 
  11. A. Labouriau, T. Robison, C. Shonrock, S. Simmonds, B. Cox, A. Pacheco, C. Cady, Boron filled siloxane polymers for radiation shielding, Radiat. Phys. Chem. 144 (2018) 288-294.  https://doi.org/10.1016/j.radphyschem.2017.08.027
  12. I.K. Akbay, A. Gungor, T. Ozdemir, Using fish scales (Sardina pilchardus) within ethylene-propylene-diene ter monomer rubber as bio-based filler, J. Appl. Polym. Sci. 135 (2018) 46698. 
  13. S.E. Turner, Reactivity effects of streaming between discrete boron carbide particles in neutron absorber panels for storage or transport of spent nuclear fuel, Nucl. Sci. Eng. 151 (2005) 344-347.  https://doi.org/10.13182/NSE05-A2553
  14. J.W. Krumpfer, T. Schuster, M. Klapper, K. Mullen, Make it nano-Keep it nano, Nano Today 8 (2013) 417-438.  https://doi.org/10.1016/j.nantod.2013.07.006
  15. D. Golberg, Y. Bando, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes, Adv. Mater. 19 (2007) 2413-2432.  https://doi.org/10.1002/adma.200700179
  16. N. Odano, A. Konnai, M. Asami, Development of high-performance gel-type radiation shielding material using polymer resin, Prog. Nucl. Sci. Technol. 4 (2014) 639-642.  https://doi.org/10.15669/pnst.4.639
  17. T. Ozdemir, Monte Carlo simulations of radioactive waste embedded into EPDM and effect of lead filler, Radiat. Phys. Chem. 98 (98) (2014) 150-154.  https://doi.org/10.1016/j.radphyschem.2014.01.021
  18. J.V. Maia, F.P. Pereira, J.C.N. Dutra, S.A.C. Mello, E.A.O. Becerra, M. Massi, A.S. S. Sobrinho, Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas, Appl. Surf. Sci. 285 (2013) 918-926.  https://doi.org/10.1016/j.apsusc.2013.09.013
  19. H.M. Eyssa, R.F. Sadek, W.S. Mohamed, W. Ramadan, Structure-property behavior of polyethylene nanocomposites containing Bi2O3 and WO3 as an eco-friendly additive for radiation shielding, Ceram. Int. 49 (2023) 18442-18454. 
  20. V.F. Sears, Neutron scattering lengths and cross sections, Neutron News 3 (1992) 26-37.  https://doi.org/10.1080/10448639208218770
  21. J.W. Shin, J.W. Lee, S. Yu, B.K. Baek, J.P. Hong, Y. Seo, W.N. Kim, S.M. Hong, C. M. Koo, Polyethylene/boron-containing composites for radiation shielding, Thermochim. Act 585 (2014) 5-9.  https://doi.org/10.1016/j.tca.2014.03.039
  22. E.M. Hegazi, H.M. Eyssa, A.A. Abd El-Megeed, Effect of nanofiller on the ageing of rubber seal materials under gamma irradiation, J. Compos. Mater. 53 (2019) 2065-2076.  https://doi.org/10.1177/0021998318819178
  23. D.H.A. Besisa, M.A.A. Hagras, E.M.M. Ewais, Y.M.Z. Ahmed, Z.I. Zaki, A. Ahmed, Low temperature synthesis of nano-crystalline h-boron nitride from boric acid/urea precursors, J. Ceram. Pro. Res. 17 (2016) 1219-1225. 
  24. H.M. Eyssa, S.A. El Mogy, H.A. Youssef, Impact of foaming agent and nanoparticle fillers on the properties of irradiated rubber, Radiochim. Act 109 (2021) 127-142.  https://doi.org/10.1515/ract-2020-0015
  25. Y.H. Zang, R. Muller, D. Froelich, Determination of cross-linking density of polymer networks by mechanical data in simple extension and by swelling degree at equilibrium, Polymer 30 (1989) 2060-2062.  https://doi.org/10.1016/0032-3861(89)90294-2
  26. W. Ramadan, K. Sakr, M. Sayed, N. Maziad, N. El-Faramawy, Anisotropic thermal, physical and neutron attenuation studies of borated acrylamide composites, Radiat. Phys. Chem. 172 (2020) 108745. 
  27. M.A. Masoud, W.A. Kansouh, M.G. Shahien, K. Sakr, A.M. Rashad, A.M. Zayed, An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes, Prog. Nucl. Energy 120 (2020) 103220. 
  28. W. Ramadan, K. Sakr, M. Sayed, N. Maziad, N. El-Faramawy, Investigation of acrylic/boric acid composite gel for neutron attenuation, Nucl. Eng. Technol. 52 (2020) 2607-2612.  https://doi.org/10.1016/j.net.2020.04.014
  29. B. Matovic, J. Lukovi'c, M. Nikolic, B. Babi'c, N. Stankovic, B. Joki'c, B. Jelenkovic, Synthesis and characterization of nanocrystaline hexagonal boron nitride powders: XRD and luminescence properties, Ceram. Int. 42 (2016) 16655-16658.  https://doi.org/10.1016/j.ceramint.2016.07.096
  30. Y. Chao, J. Zhang, H. Li, P. Wu, X. Li, H. Chang, J. He, H. Wu, H. Li, W. Zhu, Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal, J. Chem. Eng. 387 (2005) 124138. 
  31. P. Cai, L. Chen, L. Shi, Z. Yang, A. Zaho, Y. Gu, T. Huang, Y. Qian, One convenient synthesis route to boron nitride nanotube, Solid State Commun. 133 (2005) 621-623.  https://doi.org/10.1016/j.ssc.2005.01.011
  32. L. Zhang, J. Wang, Y. Gu, G. Zaho, Q. Qian, J. Li, X. Pan, Z. Zhang, Catalytic growth of bamboo-like boron nitride nanotubes using self-propagation high temperature synthesized porous precursor, Mater. Lett. 67 (2012) 17-20.  https://doi.org/10.1016/j.matlet.2011.09.054
  33. J. Vilcarromero, M.N.P. Carreno, I. Pereyra, Mechanical properties of boron nitride thin films obtained by RF-PECVD at low temperatures, Thin Solid Films 373 (2002) 273-276. 
  34. H. Turkez, M.E. Arslan, E. Sonmez, M. Acikyildiz, A. Tatar, F. Geyikoglu,Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: emphasis on toxicogenomics, Cytotechnology 71 (2019) 351-361.  https://doi.org/10.1007/s10616-019-00292-8
  35. S. Ramteke, H. Chelladurai, Examining the role of hexagonal boron nitride nanoparticles as an additive in the lubricating oil and studying its application, J. Nanomater. Nanoeng. Nanosystems 234 (2020) 19-36. 
  36. M.T. Elabbasy, F.D. Algahtani, H.F. Al-Harthi, M.F.H. Abd El-Kader, E. H. Eldrehmy, G.I. Abd El-Rahman, M.A. El-Morsy, A.A. Menazea, Optimization of compositional manipulation for hydroxyapatite modified with boron oxide and graphene oxide for medical applications, J. Mater. Res. Technol. 18 (2022) 5419-5431.  https://doi.org/10.1016/j.jmrt.2022.04.088
  37. A.B. Yang, J.Z. Guo, Y. Yang, X.T. Xi, X. Yang, H. Wang, X.L. Wu, A carbon-incorporated LiMnBO3/boron oxide composite as advanced anode material for lithium ion batteries, J. Alloys Compd. 772 (2019) 105-111.  https://doi.org/10.1016/j.jallcom.2018.09.017
  38. S. Rajadesingu, K.D. Arunachalam, Hydration effect of boric acid on the strength of high-performance concrete (HPC), IOP conf. Series, Mater. Sci. Eng. 912 (2020) 062073.  https://doi.org/10.1088/1757-899X/912/6/062073
  39. O.M. Moon, B.C. Kang, S.B. Lee, J.H. Boo, Temperature effect on structural properties of boron oxide thin films deposited by MOCVD method, Thin Solid Films 464 (2004) 164-169. 
  40. H.M. Eyssa, M. Afifi, H. Moustafa, Improvement of the acoustic and mechanical properties of sponge ethylene propylene diene rubber/carbon nanotube composites cross-linked by subsequent sulfur and electron beam irradiation, Polym. Int. 72 (2023) 87-98. 
  41. C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel, E. Grulke, Polyethylene/boron nitride composites for space radiation shielding, J. Appl. Polym. Sci. 109 (2008) 2529-2538.  https://doi.org/10.1002/app.27949
  42. M. Elsafi, M.A. El-Nahal, M.I. Sayyed, I.H. Saleh, M.I. Abbas, Effect of nanoparticles Bi2O3 on attenuation capability of radiation shielding glass, Ceram. Int. 47 (2021) 19651-19658.  https://doi.org/10.1016/j.ceramint.2021.03.302
  43. J. Kim, B.C. Lee, Y.R. Uhm, W.H. Miller, Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites, J. Nucl. Mater. 453 (2014) 48-53.  https://doi.org/10.1016/j.jnucmat.2014.06.026
  44. V. Kumar, D. Lahiri, I. Lahiri, Synthesis of boron nitride nanotubes and boron nitride nanoflakes with potential application in bioimaging, Mater. Today Proc. 5 (2018) 16756-16762.  https://doi.org/10.1016/j.matpr.2018.06.037
  45. P. Pasbakhsh, H. Ismail, M.N.A. Fauzi, A. Abou Bakr, Influence of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of EPDM nanocomposites reinforced by halloysite nanotubes, Polym. Test. 28 (2009) 548-559.  https://doi.org/10.1016/j.polymertesting.2009.04.004
  46. H. Ismail, M. Mathialagan, Compatibilization of bentonite filled ethylene-propylene-diene monomer composites: effect of maleic anhydride grafted EPDM, J. Appl. Polym. Sci. 127 (2013) 1164-1171.  https://doi.org/10.1002/app.37606
  47. W. Gabara, S. Porejko, Grafting of maleic anhydride on polyethylene. I. Mechanism of grafting in a heterogeneous medium in the presence of radical initiators, J. Polym. Sci. 5 (1967) 1547-1562.  https://doi.org/10.1002/pol.1967.150050706
  48. H.M. Eyssa, W.S. Mohamed, M.M. El-Zayat, Irradiated rubber composite with nano and micro-fillers for mining rock application, Radiochim. Act. 107 (2019) 737-753.  https://doi.org/10.1515/ract-2018-2989
  49. O.P. Grigoryeva, J. Kager-Kocsis, Melt grafting of maleic anhydride onto an ethylene-propylene-dieneterpolymer (EPDM), Eur. Polym. J. 36 (2000) 1419-1429.  https://doi.org/10.1016/S0014-3057(99)00205-0
  50. A.G. Supri, H.S. Huey, T.P. Leng, Ethylene vinyl acetate (EVA)/Natural rubber (NR)/Potash feldspar (PF) composites: the effect of PEgMAH on tensile properties and spectroscopy infrared, J. Adv Res. Mater. Sci. 7 (2015) 33-36. 
  51. B. Mu, H. Wang, X. Hao, Q. Hang, Morphology, mechanical properties and dimensional stability of biomass particles/high density polyethylene composites: effect of species and composition, polymers, Polymers 10 (2018) 308. 
  52. S. Mondal, D. Khastgir, Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black & graphene-MWCNT, Compos. -A: Appl. Sci. 102 (2017) 154-165.  https://doi.org/10.1016/j.compositesa.2017.08.003
  53. U. Atikler, D. Basalp, F. Tihminlioglu, Mechanical and morphological properties of recycled high-density polyethylene, filled with calcium carbonate and fly ash, J. Appl. Poly. Sci. 102 (2006) 4460-4467.  https://doi.org/10.1002/app.24772
  54. X.F. Wu, Z.H. Zhao, Y. Sun, H. Li, Y. Wang, C. Zhang, X. Gong, Y. Wang, X. Yang, Y. Liu, Boron nitride nanoparticles with high specific surface area: preparation by a calcination method and application in epoxy resin, J. Inorg. Organomet. Polym. Mater. 27 (2017) 1142-1147.  https://doi.org/10.1007/s10904-017-0540-x
  55. E.M. Parsons, M.C. Boyce, D.M. Parks, M. Weinberg, Three-dimensional large-strain tensile deformation of neat and calcium carbonate-filled high-density polyethylene, Polymer 46 (2005) 2257-2265.  https://doi.org/10.1016/j.polymer.2005.01.045
  56. T. Ozdemir, S.N. Yilmaz, Hexagonal boron nitride and polydimethylsiloxane: a ceramic rubber composite material for neutron shielding, Radiat. Phys. Chem. 152 (2018) 93-99.  https://doi.org/10.1016/j.radphyschem.2018.08.008
  57. S. Kemaloglu, G. Ozkoc, A. Aytac, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites, Thermochimic. Act. 499 (2010) 40-47.  https://doi.org/10.1016/j.tca.2009.10.020
  58. R.F. Landel, L.E. Nielsen, Mechanical Properties of Polymers and Composites, second ed., CRC Press, New York, 1993. 
  59. T. Ozdemir, S.N. Yilmaz, Mixed radiation shielding via 3-layered polydimethylsiloxane rubber composite containing hexagonal boron nitride, boron (III) oxide, bismuth (III) oxide for each layer, Radiat. Phys. Chem. 152 (2018) 17-22.  https://doi.org/10.1016/j.radphyschem.2018.08.035
  60. D.S. Muratov, A.A. Stepashkin, S.M. Anshin, D.V. Kuznetsov, Controlling thermal conductivity of high density polyethylene filled with modified hexagonal boron nitride (h-BN), J. Alloys Compd. 735 (2018) 1200-1205.  https://doi.org/10.1016/j.jallcom.2017.11.234
  61. A. Gungor, I.K. Akbay, T. Ozdemir, EPDM rubber with hexagonal boron nitride: a thermal neutron shielding composite, Radiat. Phys. Chem. 165 (2019) 108391. 
  62. M.Q. Liu, J.P. Duan, X.Z. Shi, J.J. Lu, W. Huang, Thermo-stabilized, porous polyimide microspheres prepared from nanosized SiO2 templating via in situ polymerization, Express Polym. Lett. 9 (2015) 14-22.  https://doi.org/10.3144/expresspolymlett.2015.3
  63. M. Wang, Z. Jiao, Y. Chen, X. Hou, L. Fu, Y. Wu, S. Li, N. Jiang, J. Yu, Enhanced thermal conductivity of poly (vinylidene fluoride)/boron nitride nanosheet composites at low filler content, Compos. -A: Appl. Sci. 109 (2018) 321-329.  https://doi.org/10.1016/j.compositesa.2018.03.023
  64. L. Fu, T. Wang, J. Yu, W. Dai, H. Sun, Z. Liu, R. Sun, N. Jiang, A. Yu, C.T. Lin, An ultrathin high-performance heat spreader fabricated with hydroxylated boron nitride nanosheets, 2D Mater. 4 (2017) 025047. 
  65. S. Demirci, B. Ari, S.B. Sengel, E. Inger, N. Sahiner, Boric acid versus boron trioxide as catalysts for green energy source H2 production from sodium borohydride methanolysis, MANAS J. Eng. 9 (2021) 142-152.  https://doi.org/10.51354/mjen.980286
  66. G. Peto, J. Csikai, G.M. Shuriet, I. Jozsa, V. Asztalos, Average cross sections for Pu-α-Be neutrons: low-energy neutrons from α-n sources, Act, Phys. Academiae. Scientiarun Hungaricae. 33 (1973) 363-367.  https://doi.org/10.1007/BF03158071
  67. M.E. Anderson, W.H. Bond Jr., Neutron spectrum of a plutonium-beryllium source, Nucl. Phys. 43 (1963) 330-338.  https://doi.org/10.1016/0029-5582(63)90352-3
  68. T. Ozdemir, I.K. Akbay, H. Uzun, I.A. Reyhancan, Neutron shielding of EPDM rubber with boric acid: mechanical, thermal properties and neutron absorption tests, Prog. Nucl. Energy 89 (2016) 102-109.  https://doi.org/10.1016/j.pnucene.2016.02.007
  69. H.R. Vega-Carrillo, E. Manzanares-Acuna, A.M. Becerra-Ferreiro, A. Carrillo-Nunez, Neutron and gamma-ray spectra of 239PuBe and 241AmBe, Appl. Radiat. Isot. 57 (2002) 167-170.  https://doi.org/10.1016/S0969-8043(02)00083-0
  70. M. Hassanpour, S. Faghihi, S. Khezripour, M. Rezaie, P. Dehghanipour, M.R. I. Faruque, M.U. Khandaker, Introduction of graphene/h-BN metamaterial as neutron radiation shielding by implementing Monte Carlo simulation, Materials 15 (2020) 6667. 
  71. Y. Shang, G. Yang, F. Su, Y. Feng, Y. Ji, D. Liu, R. Yin, C. Liu, C. Chen, Multilayer polyethylene/ hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity, Comp. Comm 19 (2020) 147-153. 
  72. M.E. Moustapha, M.A. Motaleb, M.H. Sanad, Synthesis and biological evaluation of 99mTc-labetalol for β1-adrenoceptor-mediated cardiac imaging, J. Radioanal. Nucl. Chem. 309 (2016) 511-516. 
  73. M.H. Sanad, A.A. Ibrahim, Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging, Radiochim Acta 106 (10) (2018) 843-850.  https://doi.org/10.1515/ract-2018-2960
  74. M.H. Sanad, E.H. Borai, Performance characteristic of biodistribution of 99mTc-cefprozil for in vivo infection imaging, J. Anal. Sci. Technol. 5 (1) (2018) 32. 
  75. M.H. Sanad, A.A. Ibrahim, H.M. Talaat, Synthesis, bioevaluation and gamma scintigraphy of 99mTc-N-2-(furylmethyl iminodiacetic acid) complex as a new renal radiopharmaceutical, J. Radioanal. Nucl. Chem. 315 (2018) 57-63.  https://doi.org/10.1007/s10967-017-5617-z
  76. S.F.A. Rizvi, H. Zhang, S. Mehamood, M.H. Sanad, Synthesis of 99mTc-labeled 2-Mercaptobenzimidazole as a novel radiotracer to diagonose tumor hypoxia, Transl Oncol. 13 (12) (2020) 100854. 
  77. M.H. Sanad, H.A. Shweeta, Prepartion and bio-evaluation of 99mTc-carbonyl complex of ursodeoxycholic acid for heptobiliary imaging, J. Mol. Imaging. Dyn. 5 (1) (2015) 1-5. 
  78. M.H. Sanad, H.A. Shweeta, Prepartion and bio-evaluation of 99mTc-carbonyl complex of ursodeoxycholic acid for heptobiliary imaging, J. Mol. Imag. Dyn. 5 (1) (2015) 1-5. 
  79. M.H. Sanad, E.H. Borai, A.S. M. Fouzy, Chromatographic separation and utilization of labeled 99mTc-Valsartan for cardiac imaging, IOSR J. Environ. Sci. Toxicol. Food Technol (IOSR). (2014). 
  80. M.H. Sanad, E.A. Marzook, S.B. Challan, Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging, Radiochim Acta. 106 (4) (2018) 329-336.  https://doi.org/10.1515/ract-2017-2830
  81. M.H. Sanad, A.S.M. Fouzy, H.M. Sobhy, A.S. Hathout, O.A. Hussain, Tracing the protective activity of Lactobacillus plantarum using technetium-99m-labeled zearalenone for organ toxicity, Int. J. Radiat Biol. 94 (12) (2018) 1151-1158.  https://doi.org/10.1080/09553002.2019.1524990
  82. M.H. Sanad, H.M. Talaat, Radiodiagnosis of peptic ulcer with technetium-99m-labeled esomeprazole, Radiochemistry 59 (2017) 396-401. https://doi.org/10.1134/S1066362217040129