• Title/Summary/Keyword: MATLAB Simulink

Search Result 1,126, Processing Time 0.029 seconds

Development and Optimization of Engine Module for Hybrid System Simulator (하이브리드 시스템 시뮬레이터용 엔진 모듈 개발과 최적화에 관한 연구)

  • Jeon, Dae-Il;Gong, Ho-Jeong;Hwang, In-Goo;Myung, Cha-Lee;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.14-22
    • /
    • 2010
  • Hybrid Electronic Vehicle (HEV) is one of the solutions of high oil price and environment problem. Recently, study of HEV is important for automobile industry. However HEV has a lot of components and there are many cases for assembling, it's impossible to test results from assembling by using real vehicles. To solve this problem, hybrid system simulator is required. The purpose of this study is to develop and optimize of engine module for hybrid system simulator. The commercial 1-D engine simulation program, WAVE is used to get the engine capacity and performance data and 1-D simulation model of base engine is compared with engine experiment results. Using the data, the engine module is developed based on the MATLAB Simulink. There are blocks of base engine, Single-CVVT engine and Dual-CVVT engine. The effect of acceleration and deceleration is applied to each engine block. In addition, the control and processing logics for CIS technology are developed. Finally the simulator operates FTP-72 mode test.

SYSTEMS STUDIES AND MODELING OF ADVANCED LIFE SUPORT SYSTEM

  • Kang, S.;Ting, K.C.;Both, A.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.623-631
    • /
    • 2000
  • Advanced Life Support Systems (ALSS) are being studied to support human life during long-duration space missions. ALSS can be categorized into four subsystems: Crew, Biomass Production, Food Processing and Nutrition, Waste Processing and Resource Recovery. The System Studies and Modeling (SSM) team of New Jersey-NASA Specialized Center of Research and Training (NJ-NSCORT) has facilitated and conducted analyses of ALSS to address systems level issues. The underlying concept of the SSM work is to enable the effective utilization of information to aid in planning, analysis, design, management, and operation of ALSS and their components. Analytical tools and computer models for ALSS analyses have been developed and implemented for value-added information processing. The results of analyses have been delivered through the Internet for effective communication within the advanced life support (ALS) community. Several modeling paradigms have been explored by developing tools for use in systems analysis. They include object-oriented approach for top-level models, procedural approach for process-level models, and application of commercially available modeling tools such as MATLAB$\^$(R)//Simulink$\^$(R)/. Every paradigm has its particular applicability for the purpose of modeling work. An overview is presented of the systems studies and modeling work conducted by the NJ-NSCORT SSM team in its efforts to provide systems analysis capabilities to the ALS community. The experience gained and the analytical tools developed from this work can be extended to solving problems encountered in general agriculture.

  • PDF

Control of the Bidirectional DC/DC Converter for a DC Distribution Power System in Electric Vehicles (전기 자동차의 DC 배전 시스템을 위한 양방향 DC/DC 컨버터의 제어)

  • Chang, Han-Sol;Lee, Joon-Min;Kim, Choon-Tack;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.943-949
    • /
    • 2013
  • Recently, an electric vehicle (EV) has been become a huge issue in the automotive industry. The EV has many electrical units: electric motors, batteries, converters, etc. The DC distribution power system (DPS) is essential for the EV. The DC DPS offers many advantages. However, multiple loads in the DC DPS may affect the severe instability on the DC bus voltage. Therefore, a voltage bus conditioner (VBC) may use the DC DPS. The VBC is used to mitigate the voltage transient on the bus. Thus, a suitable control technique should be selected for the VBC. In this research, Current controller with fixed switching frequency is designed and applied for the VBC. The DC DPS consist of both a resistor load and a boost converter load. The load variations cause the instability of the DC DPS. This instability is mitigated by the VBC. The simulation results by Matlab simulink and experimental results are presented for validating the proposed VBC and designed control technique.

Development of a Coordinated Voltage Regulation Scheme in Distribution Networks with Multiple Distributed Generations (협조 제어를 이용한 분산전원 연계 배전계통의 전압조정 방식 개발)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1309-1316
    • /
    • 2017
  • As penetration level of Distributed Generations (DGs) on weak distribution networks gets higher, voltage rise problem can often occur due to reverse power which is not expected in conventional distribution networks. It, however, cannot be effectively solved by using conventional voltage regulating devices such as On-Load Tap Changers (OLTCs), Step Voltage Regulators (SVRs) because those do not consider the presence of DGs when determining relevant setting parameter for voltage regulation. This paper presents a scheme for voltage regulation using coordinated control between OLTC and DGs which can actively participate in the regulation. The scheme decides which device should be operated first based on the characteristics of regulating devices, in order to prevent unnecessary operation of output changes of DG and excessive tap changing operation of OLTC. Computer simulations considering daily irradiation of PV and load curve are performed by using MATLAB Simulink and performance comparison between the presented scheme and conventional ones is also made. It can be concluded from simulation results that the scheme presented is very effective to regulate voltages in distribution networks with multiple DGs.

A Study on the Reduction Technique of Recoil Force for Soft Recoil System using Dynamic Behavior (동적 거동을 이용한 연식주퇴장치의 주퇴력 저감 기법 연구)

  • Yoo, Sam-Hyeon;Lee, Jae-Yeong;Lee, Jong-Woo;Jo, Seong-Sik;Kim, Ju-Hee;Kim, In-Su;Lim, Soo-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • The future combat system is likely to be studied and developed in terms of enhancing both firepower and mobility simultaneously. Increased firepower often necessitates a heavier firing system. In return, the body of the vehicle needs to be light-weight in order to improve the mobility of the whole system. For this reason, in the areas of weapons systems such as the tank and self-propelled artillery, a number of studies attempting to develop designs that reduce recoil force against the body of the vehicle are being conducted. The current study proposes a tank construction that has a mass-spring-damper system with two degrees of freedom. A tank structure mounted with a specific soft recoil system that was implemented using a soft recoil technique and another tank structure based on a general recoil technique were compared to each other in order to analyze the recoil forces, the displacements of recoil, and the firing intervals when they were firing. MATLAB-Simulink was used as a simulating tool. In addition, the relationship between the movement of the recoil parts and the positions of the recoil latches in each of the two structures were analyzed. The recoil impact power, recoil displacement, firing interval, and so on were derived as functional formulas based on the position of the recoil latch.

The Average Power Algorithm of Active Power Filters for Asymmetrical Three-Phase Three-Wire Power System (비대칭 3상 3선 전원 시스템을 위한 능동전력필터의 평균전력 알고리즘)

  • 정영국;김우용;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.514-524
    • /
    • 2001
  • Conventional average power theory has been used to design and control active power filters But compensating reference currents of active power filters calculated by conventional average power theory are definitively influenced by three phase source voltage conditions such as unbalance or distortion. This paper presents a new average power algorithm for active power filters which can detect symmetrically equally active or fundamental reactive currents in each phase based on decomposition of fundamental reactive component and harmonics under unbalanced power conditions. The effectiveness of the proposed algorithm is demonstrated by MATLAB/SIMULINK simulation and experimental results for a three wire distribution system with 15% unbalanced source voltages.

  • PDF

An Output Control Algorithm for Phase Shift Full Bridge Converter for Ballast Water Treatment (선박 평형수 처리용 Phase Shift Full Bridge Converter 출력 제어 알고리즘)

  • Lee, Sang-Ri;Kim, Hag-Wone;Cho, Kwan-Yuhl;Jung, Ho-Chul;Kim, Jong-Hyug;Park, Gwi-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.530-539
    • /
    • 2013
  • In large vessels, proper water level must be maintained with a balance for right and left equilibrium by absorbing or draining sea water in ballast water tank. However, this ship's ballast-water can be drained marine organisms to local sea area by world trade and this can be a source of ecological disturb. In order to solve these problems, marine organisms must be removed in accordance with the international covenant for the emission of microorganisms. By this reason, the seawater electrolysis rectifier of low-voltage high-current rectifiers with excellent ability for microbial treatment is required. In this paper, PSFB converter will be discussed for the seawater electrolysis rectifier. Furthermore, a new output control method with the power limit operation under the limited maximum voltage condition is proposed for this rectifier. The simulation for the proposed current control method for PSFB Converter is shown using MATLAB/SIMULINK. Finally the usefulness of the proposed control method is presented by the experimental results.

Dynamic Performance Analyzing of In-wheel Vehicle considering the Real Driving Conditions and Development of Derivation System for Applying Dynamometer Using Drive Motor's Dynamic Load Torque (실차 주행 조건을 고려한 인휠 차량 거동 해석 및 동력 시험계 부하 토크 인가를 위한 구동 모터의 동적 부하 도출시스템 개발)

  • Son, Seungwan;Kim, Kiyoung;Cha, Suk Won;Lim, Won Sik;Kim, Jungyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.294-301
    • /
    • 2016
  • This paper discusses about analyzing in-wheel vehicle's dynamic motion and load torque. Since in-wheel vehicle controls each left and right driving wheels, it is dangerous if vehicle's wheels are not in a cooperative control. First, this study builds the main wheel control logic using PID control theory and evaluates the stability. Using Carsim-Matlab/Simulink, vehicle dynamic motion is simulated in virtual 3D driving road. Through this, in-wheel vehicle's driving performance can be analyzed. The target vehicle is a rear-wheel drive in D-class sedan. Second, by using the first In-wheel vehicle's performance results, it derivate the drive motor's dynamic load torque for applying the dynamometer. Extracted load torque impute to dynamometer's load motor, linear experiment in dynamometer can replicated the 3-D road driving status. Also it, will be able to evaluate the more accurate performance analysis and stability, as a previous step of actual vehicle experiment.

Systems Studies and Modeling of Advanced Life Support Systems

  • Kang, S.;Ting, K.C.;Both, A.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.2 no.2
    • /
    • pp.41-49
    • /
    • 2001
  • Advanced Life Support Systems(ALSS) are being studied to support human life during long-duration space missions. ALSS can be categorized into four subsystems: Crew, Biomass Production, Food Processing and Nutrition, Waste Processing and Resource Recovery. The System Studies and Modeling (SSM) team of New Jersey-NASA Specialized Center of Research and Training (NJ-NSCORT) has facilitated and conducted analyses of ALSS to address systems level issues. The underlying concept of the SSM work is to enable the effective utilization of information to aid in planning, analysis, design, management, and operation of ALSS and their components. Analytical tools and computer models for ALSS analyses have been developed and implemented for value-added information processing. The results of analyses heave been delivered through the internet for effective communication within the advanced life support (ALS) community. Several modeling paradigms have been explored by developing tools for use in systems analysis. they include objected-oriented approach for top-level models, procedureal approach for process-level models, and application of commercially available modeling tools such as $MATLAB^{R}$/$Simulink^{R}$. Every paradigm has its particular applicability for the purpose of modeling work. an overview is presented of the systems studies and modeling work conducted by the NJ-NSCORT SSM team in its efforts to provide systems analysis capabilities to the ALS community. The experience gained and the analytical tools developed from this work can be extended to solving problems encountered in general agriculture.

  • PDF

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.