• Title/Summary/Keyword: MATLAB SIMULINK

Search Result 1,131, Processing Time 0.025 seconds

Development and Optimization of the Hybrid Engine System Model to Improve the Fuel Economy (연비향상을 위한 하이브리드 엔진 시스템 모델 개발과 최적화에 관한 연구)

  • Lee, Dong-Eun;Hwang, In-Goo;Jeon, Dae-Il;Park, Sim-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.65-73
    • /
    • 2008
  • The purpose of this study is development of universal engine model for integrated Hybrid Electric Vehicle (HEV) simulator and a optimization of engine model. The engine model of this study is based on the MATLAB Simulink for universal and include engine fuel economy technologies for HEV. Various engine fuel economy technologies for HEV is estimated by commercial engine 1-D simulation program - WAVE. And, the 1-D simulation model of base version is compared with engine experiment result. The analyzed engine technologies with 1-D simulation are Dual-CVVT, Atkinson-Cycle and Cylinder-Deactivation System. There are improvement of fuel economy and power performance with Dual-CVVT model at part load and full load, pumping loss reduction with Cylinder-Deactivation System at idle and regeneration. Each estimated technologies are analyzed by 1-D simulation on all operation region for base data to converse simulink. The simulink based engine model maintains a signal with ECU for determination of engine operation point.

Object-oriented programming and automotive powersystem (객체지향 방식의 프로그래밍과 차량 파워 시스템)

  • Jeong, Byeong-Yong;Cho, Dong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-133
    • /
    • 1996
  • This paper represents a new powertrain simulation methodology using the object-oriented programming paradigm. The advantage of the object-oriented is the module interchangeability and simulation flexibility. Powertrain subsystems and controller modules are implemented using the MEX files in MATLAB Simulink in this paper, preserving module interchangeability. Currently, the required CPU time on a 75MHz Pentium PC is about three times the real time. It is anticipated that the "Automotive Powersystem Toolbox" being developed in this research would be of much utility in designing subsystem controllers as well as in designing subsystem mechanicals.chanicals.

  • PDF

A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle (플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구)

  • 송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

A Study On Characteristics of Nozzle/Flapper Type Flow Control Servo Valve (노즐/플래퍼형 유량제어 서보밸브의 특성에 관한 연구)

  • 윤소남;강보식;성백주;김형의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.54-62
    • /
    • 2000
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of flow control servo valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle/flapper and with no drain is studied. And, the effect of the parameters, such as fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

Vector control of Induction motor drive system of dSPACE system (dSPACE 시스템에 의한 유도전동기 구동 시스템의 벡터 제어)

  • Ji, Jun-Keun;Lee, Dong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.284-287
    • /
    • 2006
  • 본 논문에서는 dSPACE사의 PowerPC603e과 TMS320F240를 사용하는 dSPACE시스템에 의한 유도전동기 구동 시스템의 벡터제어에 대하여 소개한다. MATLAB/Simulink 소프트웨어와 DS1104 R&D 제어보드, Leroy SOMER사의 0.3KW 유도전동기와 IPM 인버터를 본 연구에 사용하였다. dSPACE 시스템은 Simulink 블록들을 사용함으로써 짧은 시간동안에 다양한 형태의 제어기를 설계 및 구현할 수 있는 장점이 있기 때문에 유도전동기의 벡터제어를 쉽게 설계하고 구현할 수 있다.

  • PDF

Dynamic simulation models for seismic behavior of soil systems - Part II: Solution algorithm and numerical applications

  • Sahin, Abdurrahman
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.169-193
    • /
    • 2015
  • This paper is the second part of the study for determining the seismic behavior of soil systems. The aim of this part is to present solution approaches for determining seismic site amplification. For this purpose, two solution techniques are used. The first technique is equivalent linear analysis which is mostly used in literature. The other technique is real time parameter updating approach and this approach uses the possibilities of Simulink effectively. A graphical user interfaced (GUI) program called DTASSA standing for Discrete-Time Analysis of Seismic Site Amplification is developed. In DTASSA, automatic block diagram producing system is developed and seismic site amplification for multiple soil layers may easily be investigated in real time. Numerical applications have been carried out to check the reliability of developed algorithm. The results of DTASSA are compared with SUA, EERA and NERA programs for the particular example problems.

PI-CCC Based Switched Reluctance Generator Applications for Wind Power Generation Using MATLAB/SIMULINK

  • Kaliyappan, Kannan;Padmanabhan, Sutha
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.230-237
    • /
    • 2013
  • This paper presents a novel nonlinear model of Switched Reluctance Generator (SRG) based on wind Energy Conversion system. Closed loop control with based Proportional Integrator current Chopping Control machine model is used. A Power converter in SRG can be controlled by using PI-CCC proposed model, and can be produced maximum power efficiency and minimize the ripple contents in the output of SRG. A second power converter namely PI based controlled PWM Inverter is used to interface the machine to the Grid. An effective control technique for the inverter, based on the pulse width modulation (PWM) scheme, has been developed to make the line voltage needs less power switching devices and each pair of turbine the generated active power starts increasing smoothly. This proposed control scheme feasibility and validity are simulated on SIMULINK/SIM POWER SYSTEMS only.

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using DC Servo Motor (DC Servo Motor를 이용한 초정밀 위치결정기구의 컴퓨터 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;윤성운;이규태;곽이구;송인석;한재호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.164-169
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. As such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. Control performance and stability analysis were performed in advance by modeling and designing the controller with Simulink.

  • PDF

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.

편대비행 위성의 자세 동기화를 위한 SDRE 추적 제어기와 Hardware-In-the-Loop 시뮬레이션

  • Jeong, Jun-O;Park, Sang-Yeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.31.2-31.2
    • /
    • 2010
  • 편대비행 위성이 공동의 임무를 수행하기 위해서는 편대를 이루는 위성의 각기 다른 초기 오차와 다양한 외란 환경에서도 자세 동기화를 이룰 수 있는 기법이 필요하다. 이 연구에서는 편대비행위성의 자세 동기화를 위하여 비선형 시스템에 대한 준최적 제어기법인 SDRE(State-Dependent Riccati Equation)에 기반한 추적 제어기가 사용되었다. 반작용 휠이 포함된 위성의 자세 동역학이 SDRE 추적 제어기를 구성하는데 이용된다. 이를 Leader/Follower 편대비행 시스템에 적용하며, 기준 자세를 추적하는 Leader 위성의 자세를 Follower 위성이 추적하여 자세 동기화를 이룰 수 있다. MATLAB과 SIMULINK를 이용한 수치해석적 시뮬레이션으로 추적 제어기의 성능을 검증하였으며, 이에 대한 실시간 HIL(Hardware-In-the-Loop) 시뮬레이션이 수행되었다. 무중력 환경을 모사하는 에어베어링시스템과 세 개의 반작용 휠을 장착한 자세제어 HILS(Hardware-In-the-Loop Simulator)는 PC104 타입의 임베디드 컴퓨터에서 SIMULINK의 xPC Target을 이용한 실시간 시뮬레이션 환경을 제공하며, 이에 적용되는 SDRE 추적 제어기는 이산화되어 설계되었다. 또한 SDRE 추적 제어기에 대한 안정성을 보장하는 영역이 추정되어 위 추적 제어기가 위성 편대비행에 적합한 자세 동기화 기법임을 보였다.

  • PDF