• Title/Summary/Keyword: MATLAB/Simulink environment

Search Result 134, Processing Time 0.021 seconds

Effects of Key Operating Parameters on the Efficiency of Two Types of PEM Fuel Cell Systems (High-Pressure and Low-Pressure Operating) for Automotive Applications

  • Kim Han-Sang;Lee Dong-Hun;Min Kyoungdoug;Kim Minsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1018-1026
    • /
    • 2005
  • The proton exchange membrane (PEM) fuel cell system consisting of stack and balance of plant (BOP) was modeled in a MATLAB/Simulink environment. High-pressure operating (compressor type) and low-pressure operating (air blower type) fuel cell systems were con­sidered. The effects of two main operating parameters (humidity and the pressure of the supplied gas) on the power distribution characteristics of BOP and the net system efficiency of the two systems mentioned above were compared and discussed. The simulation determines an optimum condition regarding parameters such as the cathode air pressure and the relative humidity for maximum net system efficiency for the operating fuel cell systems. This study contributes to get a basic insight into the fuel cell stack and BOP component sizing. Further research using muli­object variable optimization packages and the approach developed by this study can effectively contribute to an operating strategy for the practical use of fuel cell systems for vehicles.

Analysis on the Clutch Torque of Automated Manual Transmission Vehicle during Dynamometer Test (동력계 시험을 이용한 자동화 수동변속차량의 클러치 토크 분석)

  • Choi, Woo-Seok;Lim, Wonsik;Oh, Ducksoo;Park, Sung-cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.287-293
    • /
    • 2015
  • With the rise in oil prices and ongoing concerns about environment, there is an increased amount of interest in automated manual transmission (AMT) vehicles. Torque control in an AMT vehicle is attained by controlling the displacement of the dry-type clutch's actuator. To provide good ride comfort akin to that of an automatic transmission vehicle, the clutch control is vital to an AMT vehicle. In this study, a method of obtaining the clutch torque from a dynamometer test is devised. This method is able to identify the relationship between the displacement of the clutch actuator and the clutch torque. A simulator for estimating the performance of an AMT vehicle is developed using MATLAB Simulink. The results obtained from both the vehicle and simulation exhibit a similar trend.

Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes (외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.

Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor (야전용 액체 연료개질 1 kW급 하이브리드 전원시스템 제어 연구)

  • Ji, Hyun-Jin;Ha, Sang-Hyun;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.732-739
    • /
    • 2011
  • A fuel cell/secondary battery hybrid power generation system could extend well beyond the efficiency and interoperability of the conventional diesel generator. The suggested power source system consists of 2.3 kW class PEMFC, 100 Ah lithium polymer battery, and two DC/DC converters by serial connection type. It was known that interoperability of sub-systems is the key factor for stable and optimal control of the hybrid power generation system. The modeling and simulation methods have been proposed to reduce the number of configurations and performance tests for components selection and select the optimized control condition of the power generation system. The control model for power source system is implemented based on the empirical formulation and carried out in the Matlab/Simulink environment. The results show that the simulation can be used to establish the algorism of prototype and increase the durability of the power source system.

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

A Study on In-wheel Motor Control to Improve Vehicle Stability Using Human-in-the-Loop Simulation

  • Ko, Sung-Yeon;Ko, Ji-Weon;Lee, Sang-Moon;Cheon, Jae-Seung;Kim, Hyun-Soo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.536-545
    • /
    • 2013
  • In this study, an integrated motor control algorithm for an in-wheel electric vehicle is suggested. It consists of slip control that controls the in-wheel motor torque using the road friction coefficient and slip ratio; yaw rate control that controls the in-wheel motor torque according to the road friction coefficient and the yaw rate error; and velocity control that controls the vehicle velocity by a weight factor based on the road friction coefficient and the yaw rate error. A co-simulator was developed, which combined the vehicle performance simulator based on MATLAB/Simulink and the vehicle model of CarSim. Based on the co-simulator, a human-in-the-loop simulation environment was constructed, in which a driver can directly control the steering wheel, the accelerator pedal, and the brake pedal in real time. The performance of the integrated motor control algorithm for the in-wheel electric vehicle was evaluated through human-in-the-loop simulations.

A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications (다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구)

  • Kim, Han-Sang;Min, Kyoung-Doug;Jeon, Soon-Il;Kim, Soo-Whan;Lim, Tae-Won;Park, Jin-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

The New MPPT Algorithm for the Dynamic MPPT Efficiency (다이나믹 MPPT를 적용한 최대전력지점추종 알고리즘)

  • Ko, Suk-Whan;Jung, Young-Seok;So, Jung-Hun;Hwang, Hye-Mi;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.1-10
    • /
    • 2014
  • The efficiency of the maximum power point tracking(MPPT) of inverter which is used in grid-connected photovoltaic systems is changed according to dynamic environment conditions. Hence, this paper evaluates the performance of the proposed method and other MPPT algorithm on the basis of European Efficiency Test(EN50530). The modeling of MPPT algorithm is made by the Matlab & Simulink. In the result of simulation, the more control period is shorter, the more MPPT efficiency is higher. Also, the Proposed MPPT algorithm has higher performance than other MPPT algorithm with no regard to control period.

Research on Standards for Protection against Electric Shock in Global Technical Regulations of Fuel Cell Vehicle (연료전지 자동차 세계기술규정의 감전보호기준 연구)

  • HwangBo, Cheon;Lee, Kyu-Myong;You, Kyeong-Jun
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.167-183
    • /
    • 2010
  • This paper analyzes the backgrounds of the standards for protection against electric shock in Global Technical Regulations (GTR) of Fuel Cell Vehicle (FCV). Targets on research were high voltage criteria, safety current, isolation and grounding resistance, time limitation, energy, adequate clearance, and test procedure. Based on human impedance and effect of current in IEC 60479-1, safety of human was examined. Then, isolation and grounding circuit model of FCV were analyzed theoretically. The results give several suggestions: touch voltage less than 25V, AC energy less than 0.0813J, separation considering middle finger length, grounding resistance less than $0.2\Omega$, maximum AC ground voltage of 1V (rms), and isolation resistance between earth and electrical chassis. In MATLAB/Simulink environment, error characteristics of isolation resistance measurement procedure using internal DC sources were analyzed under variations of internal resistance of voltmeter and isolation resistance.

Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model (단순모델을 이용한 막 가습기 열 및 물질 전달 특성 해석)

  • Yu, Sang-Seok;Lee, Young-Duk;Bae, Ho-June;Hwang, Joon-Young;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.596-603
    • /
    • 2009
  • The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/$Simulink^{(R)}$ $\Box$environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier.