• Title/Summary/Keyword: MATLAB/SIMULINK

Search Result 1,131, Processing Time 0.026 seconds

Development of On-line Condition Monitoring Program of a Turboprop Engine (터보프롭 엔진의 온라인 상태감시 프로그램 개발에 관한 연구)

  • Kong, Chang-Duk;Kim, Keon-Woo;Lim, Se-Myung;Kim, Ji-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.295-299
    • /
    • 2010
  • Recently, development and application of the condition monitoring and diagnostic system for improvement of durability and reliability and reduction of operating cost is generalized in the aircraft propulsion system. Especially, for reliable operation of the UAV which is flying in high altitude more than 40,000 ft for a long time an condition monitoring system to identify faults and degradations of its propulsion system should be needed. Therefore, this work proposes an on-line condition monitoring program using MATLAB/SIMULINK. In the development phase of the program, a engine signal generation module is used to simulate real engine measuring parameters instead of the real engine. The proposed on-line condition monitoring program was applied to a real turboprop engine to validate its application capability.

  • PDF

BLAC Drive System for Electro-Magnetic Brake (Electro-Magnetic Brake를 위한 BLAC 구동시스템)

  • Jeon, Mi-Rim;Lee, Jae-Hyun;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • The electric braking system obtains its braking force by a motor instead of the hydraulic brake which has been used in conventional automobile systems. Electric braking system is consisted of fewer numbers of components than hydraulic braking system, and it has effects of improved response and reduced braking distance for the ABS(Anti-lock Brake System) and ESC(Electronic Stability Control). This paper presents the BLAC motor drive system for Electro-Magnetic Brake(EMB). Proposed control system consists of the power converter for driving a motor and the digital control system for speed control, and the vector control is applied for fast torque response. It is verified through the simulation using Matlab/Simulink and experiment that the proposed BLAC drive system can be applied to EMB.

Integrated Fault Diagnosis Algorithm for Driving Motor of In-wheel Independent Drive Electric Vehicle (인휠 독립 구동 전기 자동차의 구동 모터 통합 고장 진단 알고리즘)

  • Jeon, Namju;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.99-111
    • /
    • 2016
  • This paper presents an integrated fault diagnosis algorithm for driving motor of In-wheel independent drive electric vehicle. Especially, this paper proposes a method that integrated the high level fault diagnosis and the low level fault diagnosis in order to improve a robustness and performance of the fault diagnosis system. The high level fault diagnosis is performed using the vehicle dynamics analysis and the low level fault diagnosis is carried using the motor system analysis. The validity of the high level fault diagnosis algorithms was verified through $Carsim^{(R)}$ and MATLAB/$Simulink^{(R)}$ cosimulation and the low level fault diagnosis's validity was shown by applying it to a MATLAB/$Simulink^{(R)}$ interior permanent magnet synchronous motor control system. Finally, this paper presents a fault diagnosis strategy by combining the high level fault diagnosis and the low level fault diagnosis.

A Study on DC-DC Power Supply for Magnetically Levitated Vehicle (자기부상열차용 DC-DC 전원장치에 관한 연구)

  • Chun, Choon-Byeon;Jeon, Kee-Young;Lee, Hoon-Goo;Han, Kyung-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.128-135
    • /
    • 2004
  • The author present a modified multi-loop algorithm including feedforward for controlling a 55kW step down chopper in the power supply of Maglev. The control law for the duty cycle consists of three terms. The first is the feedforward term. which compensates for variations in the input voltaga. The second term consists of the difference between the slowly moving inductor current and output current. The third term consists of proportional and integral terms involving the perturbation in the output voltage. This perturvation is derived by subtracting the desired output voltage from the actual output voltage. The proportional and integral action stabilizes the system and minimizes output voltage error. In order to verify the validity of the proposed multi-loop controller, simulation study was tried using Matlab simulink

Novel Two-Phase RPWM Technique for Three-Phase Induction Motor Drive (3상 유도전동기 구동을 위한 새로운 2상 RPWM기법)

  • Lee Hyo-Sang;Kim Nam-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.430-437
    • /
    • 2004
  • This thesis proposes novel SRP-PWM(Separately Random Pulse Position PWM) techniques and novel two-phase switching pattern applied to four-switch inverter, having various advantages such as operation time decrease that is required for decrease of switching damage, easy of implementation and inverter control at high frequency switching. In this thesis, we wish to confirm that SRP-PWM techniques disperse harmonic spectrum of inverter output current evenly into wide frequency area, that is, side-band of specification frequency. And we confirm the harmonic reduction effect of proposed techniques. Therefore, we will achieve an experiment by IGBT inverter using DSP and will verify the validity of proposed techniques compared with simulation results that use MATLAB/SIMULINK.

A Study on the Design and Speed Control of the Switched Reluctance Motor for Railway Traction Application (철도차량용 스위치드 릴럭턴스 전동기의 설계 및 속도제어에 관한 연구)

  • Jo, Hee;Kim, Kyeong-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.237-243
    • /
    • 2012
  • In this paper, a magnetic analysis of SRM(Switched Reluctance Motor) using 3d finite element method considering end-coil effect is presented. SRM models with different stator pole shapes are taken into consideration for the analysis of magnetic characteristics. It is observed that a stator pole shape model having a pole shoe depth is the most suitable one for railway traction application because it gives an improved inductance and torque characteristic. For a speed control of SRM, the PI and sliding mode controllers are applied to designed SRM with magnetic characteristic data obtained from the magnetic analysis. The simulations are carried out using Matlab-Simulink and the control performance is analyzed. By employing the sliding mode controller, the transient response as well as the steady-state error are much improved under a load variation of railway resistance under operation.

Noise Harmonic Reduction of IPMSM Based Next Generation High Speed Railway System using RCF-PWM (RCF-PWM을 이용한 IPMSM 기반 차세대 고속철도 구동 인버터 시스템의 소음원 고조파 저감)

  • Kim, Sung-Je;Jin, Kang-Hwan;Lee, Sang-Hyun;Kim, Yoon-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.244-250
    • /
    • 2012
  • In this paper, The next Generation High Speed Railway Inverter system using RCF-PWM(Random Carrier Frequency Pulse Width Modulation) was developed to reduce electromagnetic noise. RCF-PWM method is randomized the switching frequency in the range between Semiconductor switching devices' maximum switching frequency and minimum switching frequency, Simulation program has been built using MATLAB/Simulink to verify the validity of study. Finally, the simulation results of Next Generation High Speed Railway inverter system using the RCF method was compared with the conventional SVPWM method.

Power Generator Modeling and Simulation for LNGC (LNGC용 Power Generator 모델링 및 시뮬레이션)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Lee, Kwang-Kook;Song, Jee-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.297-299
    • /
    • 2016
  • In this paper, Power Generator modeling for LNG ship has been performed and monitoring system has been developed in MATLAB/SIMULINK. The principal component of Power Generator are engine part(Diesel Engine, Turbine Engine) which provides the mechanical power and synchronous generator which convert the mechanical power into electrical power. Also, load sharing between paralleled generators has been performed to share a total load that exceeds the capacity of a single generator and designated ship lumped load simulations have been carried out. A validity of these systems has been verified by comparison between simulation results and estimated result from the designated lumped load.

  • PDF

Design, Modeling and Analysis of a PEM Fuel Cell Excavator with Supercapacitor/Battery Hybrid Power Source

  • Dang, Tri Dung;Do, Tri Cuong;Truong, Hoai Vu Anh;Ho, Cong Minh;Dao, Hoang Vu;Xiao, Yu Ying;Jeong, EunJin;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2019
  • The objective of this study was to design and model the PEM fuel cell excavator with supercapacitor/battery hybrid power source to increase efficiency as well as eliminate greenhouse gas emission. With this configuration, the system can get rid of the internal combustion engine, which has a low efficiency and high emission. For the analysis and simulation, the governing equations of the PEM system, the supercapacitor and battery were derived. These simulations were performed in MATLAB/Simulink environment. The hydraulic modeling of the excavator was also presented, and its model implemented in AMESim and studied. The whole system model was built in a co-simulation environment, which is a combination of MATLAB/Simulink and AMESim software. The simulation results were presented to show the performance of the system.

Development of Fuzzy Logic-Based Diagnosis Algorithm for Fault Detection Of Dual-Type Temperature Sensor for Gas Turbine System (가스터빈용 듀얼타입 온도센서의 고장검출을 위한 퍼지로직 기반의 진단 알고리즘 개발)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Due to the recent increase in new and renewable energy, gas turbine generators start and stop every day to supply high-quality power, and accordingly, the life span of high-temperature parts is shortened and the failure of combustion chamber temperature sensors increases. Therefore, in this study, we proposed a fuzzy logic-based failure diagnosis algorithm that can accurately diagnose and systematically detect the failure of the sensor when the dual temperature sensor used for gas turbine control fails, and to confirm the usefulness of the proposed algorithm We tried to confirm the usefulness of the proposed algorithm by performing various simulations under the matlab/simulink environment.