• Title/Summary/Keyword: MASS LOSS RATE

Search Result 400, Processing Time 0.029 seconds

Study on the Measurement of $^{51}Cr-tagged$ Red Cell Survival - Reevaluation of its method & the effect of Blood loss on red cell suruival with $^{51}Cr$ - (방사성동위원소(放射性同位元素) $^{51}Cr$을 이용(利用)한 적혈구수명(赤血球壽命) 측정(測定)에 관(關)한 고찰(考察) -$^{51}Cr$-적혈구수명(赤血球壽命) 측정법(測定法)의 재평가(再評價)와 실혈(失血)이 수명측정(壽命測定)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Choi, Hak-Yong;Koh, Chang-Soon;Lee, Moon-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.4 no.2
    • /
    • pp.55-66
    • /
    • 1970
  • Reappraisal measurements of apparent half survival time of red cell by $^{51}Cr$ method was made and effects of blood-letting over red cell survival were observed. The study was performed on 53 normal male subjects under three different experimental conditions. 1. Group 1 Mean $^{51}Cr$ red cell half survival by ACD wash method was 29.7 days. $T\frac{1}{2}$ of Ascorbic acid method was 29.0 days in group with 100 mg dose and 29.1 days in group with 50 mg dose respectively. There was no difference between these two methods in regards to red cell half survival. No difference were noted in amount of ascorbic acid administered. 2. Group 2 As daily amount of blood loss is increased the shortening of red cell half survival was noted. Rapid phase was seen when blood loss ranged 10 to 25 ml per day, while slow phase noted when more loss amounted 25 ml or more daily. Thus, it was clear that there was more than an exponential relation between $T\frac{1}{2}$ and the amount of blood loss. 3. Group 3 $T\frac{1}{2}$ measured by cpm per whole blood was within normal range and $T\frac{1}{2}$ measured by cpm per red cell mass showed shortening tendency when compared with the former in the group measured after blood loss (from 25 ml daily up to 100 ml daily in 10 days). In the group with rather constant blood loss of 100 ml daily for 10 consecutive days revealed the significant difference in two measurements (P<0.01). 4. $T\frac{1}{2}$ in non-steady state When red cell production is increased compared with red cell destruction, $T\frac{1}{2}$ measured by cpm per red cell mass being shorter than that by cpm per whole blood. Shortening of $T\frac{1}{2}$ measured by cpm per whole blood is more prominent. if red cell destrction is enhanced and exceeds production. 5. It is clear that when expressing red cell destruction rate, $T\frac{1}{2}$ measured by cpm per whole blood is more adequate and production more consistent with cpm red cell mass. 6. $T\frac{1}{2}$ measured during blood-letting, when corrected by amount of blood loss, it remains normal. It is erroneous to use conventional equational when measuring $T\frac{1}{2}$ in non-steady. $T\frac{1}{2}$ measured by cpm per whole blood is considred more applicable in clinical evaluation.

  • PDF

Analysis for the Coolability of the Reactor Cavity in a Korean 1000 MWe PWR Using MELCOR 1.8.3 Computer Code

  • Lee, Byung-Chul;Kim, Ju-Yeul;Chung, Chang-Hyun;Park, Soo-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.669-674
    • /
    • 1996
  • The analysis for the coolability of the reactor cavity in typical Korean 1000 MWe Nuclear Unit under severe accidents is performed using MELCOR 1.8.3 code. The key parameters molten core-concrete interaction(MCCI) such as melt temperature, concrete ablation history and gas generation are investigated. Total twenty cases are selected according to ejected debris fraction and coolant mass, The ablation rate of concrete decreases as mass of the melt decreases and coolant mass increases. Heat loss from molten pool to coolant is comparable to total decay heat, so concrete ablation is delayed until water is absent and crust begins to remove. Also, overpressurization due to non-condensible gases generated during corium and concrete interacts can cause to additional risk of containment failure. It is concluded that flooded reactor cavity condition is very important to minimize the cavity ablation and pressure load by non-condensible gases on containment.

  • PDF

Weight Loss as a Nonpharmacologic Strategy for Erosive Esophagitis: A 5-Year Follow-up Study

  • Bang, Ki Bae;Park, Jung Ho
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.633-640
    • /
    • 2018
  • Background/Aims: Obesity is a risk factor for gastroesophageal reflux disease (GERD), with several studies demonstrating positive associations between body mass index (BMI) and GERD symptoms. However, little is known about the effect of BMI changes on erosive esophagitis (EE). In this study, we investigated whether BMI reduction could resolve EE. Methods: A retrospective cohort study was performed to assess the natural course of EE according to changes in BMI. Participants undergoing health check-ups from 2006 to 2012 were enrolled, and 1,126 subjects with EE were included. The degree of esophagitis was measured by upper endoscopy and serially checked over a 5-year follow-up. Logistic regression and Cox proportional hazards models were used to investigate the association between BMI reduction and EE resolution. Results: Substantial weight loss is associated with EE resolution. The adjusted odds ratio for EE resolution was 1.44 (95% confidence interval [CI], 1.09 to 1.92) among participants with a decrease in BMI compared to those with no decrease in BMI. The EE resolution rate was related to the degree of BMI reduction. The effect of weight loss on EE resolution was higher among subjects who lost more weight. Compared with subjects with no decrease in BMI, the hazard ratios for EE resolution were 1.09 (95% CI, 0.89 to 1.35), 1.31 (95% CI, 1.01 to 1.72) and 2.12 (95% CI, 1.44 to 3.12) in subjects with BMI reductions of ${\leq}1$, 1-2, and >$2kg/m^2$, respectively. Conclusions: EE resolution is associated with a decrease in BMI, and weight loss is potentially an effective GERD treatment.

ESTIMATION OF LONG-TERM POLLUTANT REMOVAL EFFICIENCIES OF WET RETENTION/DETENTION BASINS USING THE WEANES MODEL

  • Youn, Chi-Hyueon;Pandit, Ashok;Cho, Han-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.215-219
    • /
    • 2005
  • A macro spreadsheet model, WEANES (Wet Pond Annual Efficiency Simulation Model), has been developed to predict the long-term or annual removal efficiencies of wet retention/detention basins. The model uses historical, site-specific, multi-year, rainfall data, usually available from a nearby National Oceanic and Atmospheric Administration (NOAA) climatological station to estimate basin efficiencies which are calculated based on annual mass loads. Other required input parameters are: 1) watershed parameters; drainage area, pervious curve number, directly connected impervious area, and ti me of concentration, 2) pond parameters; control and overflow elevations, pond side slopes, surface areas at control elevation and pond bottom; 3) outlet structure parameters; 4) pollutant event mean concentrations; and 5) pond loss rate which is defined as the net loss due to evaporation, infiltration and water reuse. The model offers default options for parameters such as pollutant event mean concentrations and pond loss rate. The model can serve as a design, planning, and permitting tool for consulting engineers, planners and government regulators.

  • PDF

Experiment on the Correlation between Mass Flux of Heptane and Material Property of Wall in Compartment Fire (구획 화재 시 벽면 재료 특성과 헵탄의 질량유속 상관관계 실험)

  • Park, Jung Wook;Shin, Yeon Je;Kim, Jeong Yong;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • In this study, the relationships between the material properties of the wall and the fuel mass flux in compartment fire. The fire resistant board (fire-board) and steel plate compartments are constructed with a 0.3 m width, 0.5 m height and 3.0 m length. To obtain the mass loss rate considering the location of the fire origin in compartment, experiments of a heptane pool fire are performed with a combustion area of $0.01m^2$ and $0.0225m^2$. The results show that the initial mass flux of heptane, $0.0087kg/m^2{\cdot}s$, is increased to $0.166kg/m^2{\cdot}s$ for fire board and $0.019kg/m^2{\cdot}s$ for steel plate. It means that the fire-scenario should be considered with the thermal characteristics of the material properties and geometric shapes of the compartment to predict fire propagation accurately in a compartment space.

조사연구-콘칼로리메타를 이용한 화재시험에 대하여

  • Lee, Du-Hyeong
    • Fire Protection Technology
    • /
    • s.19
    • /
    • pp.22-28
    • /
    • 1995
  • The rate of heat release is probably the single most important measure of fire hazard. Several tech-niques were developed for the measurement of rate of heat release, but were not suitable for fire test-ing purpose. Recently the application of oxygen consumption principle made it possible to development of well-characterized heat release rate measurement apparatus, the furniture calorimeter for large-scale fire tests and the cone calorimeter for bench-scale fire tests. The cone calorimeter can be used to determine the ignitability as well as heat release rate and smoke development, mass loss rate, combustion gas production etc. from burning materials. Thus, test method using cone calorimeter, an internationally recognized and accepted for the evalua-tion of fire properties, is a very promising tool for combustion study on various kind of materials and products.

  • PDF

The Thermal Characteristics of Tree Branches, Barks, Living Leaves and Dead Leaves in Pinus Densiflora and Quercus Dentata (소나무와 떡갈나무의 주요 부위별 열적특성에 관한 연구)

  • Park, Young-Ju;Lee, Si-Young;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.84-92
    • /
    • 2008
  • Disclosed is a study related to the thermal characteristics of Pinus densiflora and Quercus dentate identifying the presence of any significant difference in the above trees, which are native to Young Dong Province of Korea, according to different regions of the trees such as branches, barks, living leaves and dead leaves. For this purpose, we have carried out a cone calorimeter test focusing on the variables such as mass loss, heat release, ignition time, flame holding time and concentrations of CO and $CO_2$. The results showed that the total mass loss was greatest in tree branches, whereas the ignition time of dead leaves was fastest both in Pinus densiflora and Quercus dantata. The flame holding times of dead leaves and barks were about $640{\sim}1,016s$ and the total heat release of dead leaves was around 60.1 $MJ/m^2$, twice the total heat release of living leaves. In addition, the maximum exhaust concentrations of CO and $CO_2$ in tree branches of Quercus dentata was 2.82 times higher than those of Pinus densiflora, respectively. From the foregoing, it was confirmed that there exist region-specific differential thermal characteristics in Pinus densiflora and Quercus dentata.

A Perspective on the Sustainability of Soil Landscape Based on the Comparison between the Pre-Anthropocene Soil Production and Late 20th Century Soil Loss Rates (인류세 이전 토양생성률과 20세기 후반 토양유실률 비교를 통한 토양경관 지속가능성 전망)

  • Byun, Jongmin;Seong, Yeong Bae
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.2
    • /
    • pp.165-183
    • /
    • 2015
  • It is well known that, since the 15th century, the amount of soil loss in our country due to change in land use by human has increased more rapidly than ever before. However we cannot answer the question 'How long can the soil persist under the current rates of soil loss?', because it was difficult to quantify the soil production rate. With the advancement of accelerated mass spectrometry, the attempt to quantify rate of soil production and derive soil production function succeeded, and recently it was also applied into the Daegwanryeong Plateau. Here we introduce the principles for quantifying soil production and deriving soil production function using terrestrial cosmogenic nuclides, and then compare the soil production rates from the plateau with soil loss data after the late 20th century, and finally estimate how long the soil can persist. Averaged soil production rate since the Holocene derived from the plateau is revealed as ${\sim}0.05[mm\;yr^{-1}]$, and, however, the recent soil loss rate of intensively used farmlands at the same region is up to sixty times greater than the soil production rate. Thus, if current land use system is maintained, top soils on the cultivated lands over hillslopes especially in upland areas are expected to disappear within several decades at the earliest.

  • PDF

A risk analysis for the determination of a tunnel support pattern (터널 지보패턴 결정을 위한 위험도 분석)

  • You, Kwang-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.241-250
    • /
    • 2003
  • Rock mass is very inhomogeneous in nature and data obtained by site investigations and tests are very limited. For this reason, many uncertainties are to be included in the process of constructing structures in rock mass. In the design of a tunnel, support pattern, advance rate, and excavation method, which are important design parameters, must be determined to be optimal. However, it is not easy to determine those parameters. Moreover if those parameters are determined incorrectly, unexpected risk occurs such as decrease in the stability of a tunnel or economic loss due to the excessive supports etc. In this study, how to determine an optimal support pattern and advance rate, which are the important tunnel design parameters, is introduced based on a risk analysis. It can be confirmed quantitatively that the more supported a tunnel is, the larger reliability index becomes and the more stable the tunnel becomes. Also an optimal support pattern and advance rate can be determined quantitatively by performing a risk analysis considering construction cost and the cost of loss which can be occurred due to the collapse of a tunnel.

  • PDF

The Characteristics of Organic Degradation and Ammonia Volatilization in the Liquid Composting of Pig Slurry

  • Kim, Chang-Gyu;Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.325-335
    • /
    • 2017
  • This study was carried out for 30 days in aeration type and agitation type reactor to characterize organic matter decomposition and ammonia volatilization during the liquid composting of pig slurry, and organic matter and nitrogen removal rate through mass balance analysis was analyzed. In the aeration type reactor, the pH increased from 7.0 to 9.13, and TS 34.5%, VS 33.4%, $BOD_5$ 71.2%, $COD_{Cr}$ 62.3% and TOC 83.2% were removed. In addition, 44.6% of TN and 65.0% of ${NH_4}^+-N$ were removed. In the agitation type reactor, the pH increased from 7.0 to 8.10, and the removal rates of TS 0.9%, VS 0.5%, $COD_{Cr}$ 27.5%, $BOD_5$ 28.9% and TOC 41.3% were obtained. And TN and ${NH_4}^+-N$ showed removal rate of 25.3% and 29.2%, respectively. The first order kinetics constant related to $BOD_5$ degradation was $-0.039day^{-1}$ for aerobic liquid composting and $-0.013day^{-1}$ for agitated reactor. Nitrogen loss in aerobic liquid composting was about 2.3 times higher than that of agitated reactor, whereas FAN/TAN in aerobic liquid composting was about 7.9 times higher than that of agitation type reactor. Therefore, despite the low FAN/TAN in the agitation type reactor, the nitrogen loss rate was relatively high.