• Title/Summary/Keyword: MARS code

Search Result 114, Processing Time 0.024 seconds

Assessment and Improvement of the Horizontal In-Tube Condensation Heat Transfer Model in the MARS code (MARS 코드의 수평관내부 응축열전달 모델 평가 및 개선)

  • Lee, Hyun Jin;Ahn, Tae Hwan;Yun, Byong Jo;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.56-68
    • /
    • 2016
  • Extensive researches have been carried out for enhancing the safety of nuclear power plants and, especially, the development of passive cooling systems, such as passive containment cooling system (PCCS) and passive residual heat removal system, is increasingly important, where condensation is a crucial heat transfer mechanism. Recently, Ahn & Yun et al. developed a horizontal in-tube condensation heat transfer model as one of the activities for the PCCS development. In this work, we implemented the Ahn & Yun 's condensation heat transfer model into the MARS code and assessed it using the PASCAL experimental data. Based on the results of the assessment, we identified the limitations of the Ahn & Yun 's model and suggested a modified Ahn & Yun 's model, and assessed the model using various experimental data.

NUPEC BFBT SUBCHANNEL VOID DISTRIBUTION ANALYSIS USING THE MATRA AND MARS CODES

  • Hwang, Dae-Hyun;Jeong, Jae-Jun;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.295-306
    • /
    • 2009
  • The subchannel grade void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility were evaluated with the subchannel analysis code MATRA and the system code MARS. Fifteen test series from five different test bundles were selected for an analysis of the steady-state subchannel void distributions. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5% to 25%. The results of the transient calculations were also similar and were highly feasible. However, the computational aspects of the two codes were clearly different.