본 논문에서는 Mean Absolute Percentage Error (이하 MAPE)와 Symmetric Mean Absolute Percentage (이하 sMAPE)의 새로운 접근법을 이용한 시계열 예측 모델의 평가 방법을 소개한다. MAPE, sMAPE에는 다음과 같은 문제점이 있다. 데이터 집합에서 관측 값이 0일 경우 평가할 수 없고, 관측 값이 0에 매우 가깝다면 과도한 평가 값을 측정한다. 관측 값과 예측 값 간에 동일한 오차를 가지더라도 다른 값으로 평가하는 문제도 가지고 있다. 동일한 오류 값이 과대 예측되었는지 아니면 과소 예측되었는지에 따라 다른 평가 값을 측정하거나 관측 값의 부호와 예측 값의 부호가 서로 다르면 그 오차는 평가 값에 반영되지 않는다. 이러한 문제는 Maximum Mean Absolute Percentage Error (이하 mMAPE)에 의해 해결하였다. 우리는 MAPE 평가 방법의 분모에서 관측 값을 사용하는 대신 최대 절대 값을 사용했다. 최대 절대 값이 1보다 작으면 분모를 제거하여 0 값이 정의되지 않은 문제와 미세한 값일 경우 과대 측정되는 문제를 해결하였다. Beijing PM2.5의 온도 데이터와 시뮬레이션 데이터를 통해 mMAPE와 다른 평가 방법들의 결과 값을 비교하였으며, 위의 문제들을 해결할 수 있음을 검증하였다.
본 연구에서는 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망을 Internet of Things (IoT) 파워미터에 적용하여 단기 전력사용량 예측방법을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 성능평가 지표로써 Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Percentage Error (MPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)를 이용한다. 실험 결과는 GRU 기반의 모델이 LSTM 기반의 모델에 비해 MAPE 기준으로 4.52%, MPE 기준으로 5.59%만큼의 성능개선을 보였다.
유출예측량을 모의할 때 과거와 현재의 수문자료를 이용한다는 측면에서 미래 예측결과의 불확실성을 완전히 제거할 수는 없겠지만, 다양한 기법별 분석에 의하여 불확실성을 감소시킬 수 있다. 본 연구에서는 유출예측의 정확성 향상을 위해 다양한 유출예측 기법을 적용 및 평가하였으며 확률론적 예측을 가능하게 하는 예측기법인 ESP와 관측 시계열 자료를 이용한 통계기법으로 공주지점의 유출예측을 수행하였다. 각 기법에 따른 유출예측 결과의 신뢰성 평가는 MAE(Mean Absolute Error), RMSE(Root Mean Squared Error), RRMSE(Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC(Theil Inequality Coefficient)를 이용하였다. ESP 확률을 이용하여 예측한 유출결과와 통계적 시계열 분석에 의해 예측된 유출결과를 MAE, RMSE, RRMSE, MAPE, TIC를 이용하여 비교 분석하였으며 유출예측의 개선효과를 확인해본 결과, ESP 확률을 이용한 예측이 MAE(10.6), RMSE(15.14), RRMSE(0.244), MAPE(22.74%), TIC(0.13)으로 평가되었으며 MAE(23.2), RMSE(37.13), RRMSE(0.596), MAPE(26.69%), TIC(0.30)으로 평가된 ARMA와 MAE(26.4), RMSE(34.44), RRMSE(0.563), MAPE(47.38%), TIC(0.25)으로 평가된 Winters 에 비해 신뢰성이 높게 나타났다.
Journal of the Korean Data and Information Science Society
/
제23권6호
/
pp.1093-1102
/
2012
본 연구에서는 다변량시계열모형인 VAR (vector autoregressive regression)모형에 의하여 금리 스프레드의 시계열예측을 수행하였다. 국내외 거시경제변수들 중에서 교차상관분석 및 그랜져인과 검정을 통하여 상호간에 설명력이 있는 변수들을 추출하여 VAR모형의 시계열변수로 사용하였다. 마지막 12개월의 예측치에 대한 MAPE (mean absolute percentage error)와 RMSE (root mean square error)에 근거하여 모형의 예측력을 단일변량 시계열모형인 AR (autoregressive regression) 모형과 비교하였다.
본 논문에서 기상 데이터를 사용하여 태양광 에너지를 예측하기 위해 기계학습 모델인 SVM(Support Vector Machine)과 ANN(Artificial Neural Network)의 성능을 비교한다. 장 단파 복사선 평균, 강수량, 온도 등 15가지 종류의 기상 데이터를 사용하여 두 모델을 생성하고, 실험을 통해 최적의 SVM의 RBF(Radial Basis Function) 파라미터와 ANN의 은닉층과 노드 개수, 정규화 파라미터를 도출하였다. SVM과 ANN 모델의 성능을 비교하기 위한 지표로서 MAPE(Mean Absolute Percentage Error)와 MAE(Mean Absolute Error)를 사용하였다. 실험 결과 SVM 모델은 MAPE=21.11, MAE=2281417.65의 성능을 달성하였고 ANN은 MAPE=19.54, MAE=2155345.10776의 성능을 달성하였다.
최근 일별 최대 전력수요 예측은 전력설비 계획 및 운용에 매우 중요한 사안으로 주목받고 있다. 본 연구는 일별 최대 전력수요 예측을 위하여 대표적 시계열 모형을 소개하고, 예측의 성능 비교를 위하여 RMSE(Root mean squared error)와 MAPE(Mean absolute percentage error)를 사용한다. 연구결과로 보완된 Holt-Winters 모형과 Reg-ARIMA 모형이 다른 모형에 비하여 우수한 예측 성능을 보였다.
태양광발전시스템은 태양광으로부터 에너지를 생산하는 발전기술이며, 신재생 에너지 기술 중 가장 빠르게 성장하고 있다. 태양광 발전 시스템은 부하에 안정적으로 에너지를 공급하는 것이 가장 중요시 된다. 그러나 날씨 및 기상 조건에 따라 에너지 생산이 불안정하기 때문에 에너지 생산량에 대한 정확한 예측이 필요하다. 본 논문에서는 강수량, 장 단파 복사선 평균, 온도 등 15가지 종류의 기상 데이터를 사용하여 태양광 에너지를 예측하는 인공 신경망(ANN)을 구현하고 성능을 평가한다. 인공 신경망은 은닉층을 구성하고 오버피팅을 방지하기 위한 페널티 ${\alpha}$와 같은 파라미터를 조절하여 구현한다. 예측모델의 정확도와 타당성을 검증하기 위해 성능지표로 MAPE(Mean Absolute Percentage Error)와 MAE(Mean Absolute Error)를 사용한다. 실험 결과 Hidden Layer $Sizes=^{\prime}16{\times}10^{\prime}$을 사용하였을 때 MAPE=19.54와 MAE=2155345.10776로 나타났다.
Communications for Statistical Applications and Methods
/
제22권6호
/
pp.675-683
/
2015
In the 21st century, we now face the serious problems of the enormous consumption of the energy resources. Depending on the power consumption increases, both China and South Korea face a reduction in available resources. This paper considers the regression models and time-series models to compare the performance of the forecasting accuracy based on Mean Absolute Percentage Error (MAPE) in order to forecast the electricity demand accurately on the short-term period (68 months) data in Northeast China and find the relationship with Korea. Among the models the support vector regression (SVR) model shows superior performance than time-series models for the short-term period data and the time-series models show similar results with the SVR model when we use long-term period data.
도시가스 배관은 지중에 매설되어 있기 때문에 세부 관리가 어렵고 다양한 위험에 노출되어 있다. 본 연구에서는 도시가스 배관압력 실시간 데이터를 분석해 배관압력 이상을 예측하고 전문가의 의사결정을 돕는 모델을 제안한다. 국내 도시가스 공급업체들 중 하나인 중부도시가스사의 정압기에서 수집하는 실시간 배관압력 데이터와 시간변수, 외부환경변수를 통합해 분석 데이터로 사용한다. 아산시와 천안시에 위치하는 11개 정압기를 분석 대상으로 하며 분 단위 배관압력 예측모델을 구현한다. Random forest, support vector regression(SVR), long-short term memory(LSTM) 알고리즘을 사용해 회귀모델을 구현한 결과 LSTM 모델에서 우수한 성능을 보인다. 아산시 배관압력 예측모델의 경우 LSTM 모델에서 RMSE가 0.011, MAPE가 0.494이며, 천안시 배관압력 예측모델의 경우 LSTM 모델에서 평균제곱근오차(root mean square error, RMSE)가 0.015, 절대평균백분율오차(mean absolute percentage error, MAPE)가 0.668로 가장 낮은 오류율을 보인다.
급증하고 있는 전력수요에 대한 신뢰성 있는 예측은 합리적인 전력수급계획 수립 및 운용에 있어서 매우 중대한 사안이다. 본 논문에서는 여러 시계열 모형의 비교를 통해 전력수요량과 밀접한 연관성이 있는 온도를 어떠한 형태로 고려할 것인지, 또한 4계절이 뚜렷하여 계절별 기온 차가 많이 나는 우리나라의 특성을 어떻게 고려할 것인지에 대하여 연구하였다. 모형 간 예측력을 비교하기 위하여 Mean Absolute Percentage Error(MAPE)를 사용하였다. 모형의 성능비교 결과는 냉 난방지수와 계절요인을 동시에 고려하면서 큰 변동성을 잘 고려해줄 수 있는 Reg-AR GARCH 모형이 가장 우수한 예측력을 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.