• Title/Summary/Keyword: MAP algorithm

Search Result 1,986, Processing Time 0.024 seconds

Particulate Matter Rating Map based on Machine Learning with Adaboost Algorithm (기계학습 Adaboost에 기초한 미세먼지 등급 지도)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.141-150
    • /
    • 2021
  • Fine dust is a substance that greatly affects human health, and various studies have been conducted in this regard. Due to the human influence of particulate matter, various studies are being conducted to predict particulate matter grade using past data measured in the monitoring network of Seoul city. In this paper, predictive model have focused on particulate matter concentration in May, 2019, Seoul. The air pollutant variables were used to training such as SO2, CO, NO2, O3. The predictive model based on Adaboost, and training model was dividing PM10 and PM2.5. As a result of the prediction performance comparison through confusion matrix, the Adaboost model was more conformable for predicting the particulate matter concentration grade. Although air pollutant variables have a higher correlation with PM2.5, training model need to train a lot of data and to use additional variables such as traffic volume to predict more effective PM10 and PM2.5 distribution grade.

Design and Implementation of Space Adaptive Autonomous Driving Air Purifying Robot for Green Smart Schools (그린 스마트 스쿨을 위한 공간 적응형 자율주행 공기청정 로봇 설계 및 구현)

  • Oh, Seokju;Lee, Jaehyeong;Lee, Chaegyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • The effect of indoor air pollution on the human body is greater and more dangerous than outdoor air pollution. In general, a person stays indoors for a long time, and in a closed room, pollutants are continuously accumulated and the polluted air is better delivered to the lungs. Especially in the case of young children, it is very sensitive to indoor air and it is fatal. In addition, methods to reduce indoor air pollution, which cannot be ventilated with more frequent indoor activities and continuously increasing external fine dust due to Covid 19, are becoming more important. In order to improve the problems of the existing autonomous driving air purifying robot, this paper divided the map and Upper Confidence bounds applied to Trees(UCT) based algorithm to solve the problem of the autonomous driving robot not sterilizing a specific area or staying in one space continuously, and the problem of children who are vulnerable to indoor air pollution. We propose a space-adaptive autonomous driving air purifying robot for a green smart school that can be improved.

Enhancing Existing Products and Services Through the Discovery of Applicable Technology: Use of Patents and Trademarks (제품 및 서비스 개선을 위한 기술기회 발굴: 특허와 상표 데이터 활용)

  • Seoin Park;Jiho Lee;Seunghyun Lee;Janghyeok Yoon;Changho Son
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.1-14
    • /
    • 2023
  • As markets and industries continue to evolve rapidly, technology opportunity discovery (TOD) has become critical to a firm's survival. From a common consensus that TOD based on a firm's capabilities is a valuable method for small and medium-sized enterprises (SMEs) and reduces the risk of failure in technology development, studies for TOD based on a firm's capabilities have been actively conducted. However, previous studies mainly focused on a firm's technological capabilities and rarely on business capabilities. Since discovered technologies can create market value when utilized in a firm's business, a firm's current business capabilities should be considered in discovering technology opportunities. In this context, this study proposes a TOD method that considers both a firm's business and technological capabilities. To this end, this study uses patent data, which represents the firm's technological capabilities, and trademark data, which represents the firm's business capabilities. The proposed method comprises four steps: 1) Constructing firm technology and business capability matrices using patent classification codes and trademark similarity group codes; 2) Transforming the capability matrices to preference matrices using the fuzzy function; 3) Identifying a target firm's candidate technology opportunities using the collaborative filtering algorithm; 4) Recommending technology opportunities using a portfolio map constructed based on technology similarity and applicability indices. A case study is conducted on a security firm to determine the validity of the proposed method. The proposed method can assist SMEs that face resource constraints in identifying technology opportunities. Further, it can be used by firms that do not possess patents since the proposed method uncovers technology opportunities based on business capabilities.

Experimental research on flow regime and transitional criterion of slug to churn-turbulent and churn-turbulent to annular flow in rectangular channels

  • Qingche He;Liang-ming Pan;Luteng Zhang;Wangtao Xu;Meiyue Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3973-3982
    • /
    • 2023
  • As for two-phase flow in rectangular channels, the flow regimes especially like churn-turbulent and annular flow are significant for the physical problem like Countercurrent Flow Limitation (CCFL). In this study, the rectangular channels with cross-sections of 4 × 66 mm, 6 × 66 mm, 8 × 66 mm are adopted to investigate the flow regimes of air-water vertical upward two phase flow under adiabatic condition. The gas and liquid superficial velocities are 0 ≤ jg ≤ 20m/s and 0.25 ≤ jf ≤ 3m/s respectively which covering bubbly to annular flow. The flow regimes are identified by random forest algorithm and the flow regime maps are obtained. As the results, the transitional void fraction from slug to churn turbulent flow fluctuate from 0.47 to 0.58 which is significantly affected by the dimensional size of channel and flow rate. Besides, the void fraction at transitional points from churn-turbulent (slug) to annular flow are 0.66-0.67, which are independent with the gap size. Furthermore, a new criteria of slug to churn-turbulent flow is established in this study. In addition, by introducing the interfacial force model, the criteria of churn-turbulent (slug) flow to annular flow is verified.

Person Identification based on Clothing Feature (의상 특징 기반의 동일인 식별)

  • Choi, Yoo-Joo;Park, Sun-Mi;Cho, We-Duke;Kim, Ku-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.

A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring (재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Recently, due to the large-scale damage of natural disasters caused by global climate change, a monitoring system applying remote sensing technology is being constructed in disaster areas. Among remote sensing platforms, the drone has been actively used in the private sector due to recent technological developments, and has been applied in the disaster areas owing to advantages such as timeliness and economical efficiency. This paper deals with the development of a preprocessing system that can map the drone image data in a near-real time manner as a basis for constructing the disaster monitoring system using the drones. For the research purpose, our system is based on the SURF algorithm which is one of the computer vision technologies. This system aims to performs the desired correction through the feature point matching technique between reference images and shot images. The study area is selected as the lower part of the Gahwa River and the Daecheong dam basin. The former area has many characteristic points for matching whereas the latter area has a relatively low number of difference, so it is possible to effectively test whether the system can be applied in various environments. The results show that the accuracy of the geometric correction is 0.6m and 1.7m respectively, in both areas, and the processing time is about 30 seconds per 1 scene. This indicates that the applicability of this study may be high in disaster areas requiring timeliness. However, in case of no reference image or low-level accuracy, the results entail the limit of the decreased calibration.

A Study for Estimation of High Resolution Temperature Using Satellite Imagery and Machine Learning Models during Heat Waves (위성영상과 머신러닝 모델을 이용한 폭염기간 고해상도 기온 추정 연구)

  • Lee, Dalgeun;Lee, Mi Hee;Kim, Boeun;Yu, Jeonghum;Oh, Yeongju;Park, Jinyi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1179-1194
    • /
    • 2020
  • This study investigates the feasibility of three algorithms, K-Nearest Neighbors (K-NN), Random Forest (RF) and Neural Network (NN), for estimating the air temperature of an unobserved area where the weather station is not installed. The satellite image were obtained from Landsat-8 and MODIS Aqua/Terra acquired in 2019, and the meteorological ground weather data were from AWS/ASOS data of Korea Meteorological Administration and Korea Forest Service. In addition, in order to improve the estimation accuracy, a digital surface model, solar radiation, aspect and slope were used. The accuracy assessment of machine learning methods was performed by calculating the statistics of R2 (determination coefficient) and Root Mean Square Error (RMSE) through 10-fold cross-validation and the estimated values were compared for each target area. As a result, the neural network algorithm showed the most stable result among the three algorithms with R2 = 0.805 and RMSE = 0.508. The neural network algorithm was applied to each data set on Landsat imagery scene. It was possible to generate an mean air temperature map from June to September 2019 and confirmed that detailed air temperature information could be estimated. The result is expected to be utilized for national disaster safety management such as heat wave response policies and heat island mitigation research.

A Scalable OWL Horst Lite Ontology Reasoning Approach based on Distributed Cluster Memories (분산 클러스터 메모리 기반 대용량 OWL Horst Lite 온톨로지 추론 기법)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.307-319
    • /
    • 2015
  • Current ontology studies use the Hadoop distributed storage framework to perform map-reduce algorithm-based reasoning for scalable ontologies. In this paper, however, we propose a novel approach for scalable Web Ontology Language (OWL) Horst Lite ontology reasoning, based on distributed cluster memories. Rule-based reasoning, which is frequently used for scalable ontologies, iteratively executes triple-format ontology rules, until the inferred data no longer exists. Therefore, when the scalable ontology reasoning is performed on computer hard drives, the ontology reasoner suffers from performance limitations. In order to overcome this drawback, we propose an approach that loads the ontologies into distributed cluster memories, using Spark (a memory-based distributed computing framework), which executes the ontology reasoning. In order to implement an appropriate OWL Horst Lite ontology reasoning system on Spark, our method divides the scalable ontologies into blocks, loads each block into the cluster nodes, and subsequently handles the data in the distributed memories. We used the Lehigh University Benchmark, which is used to evaluate ontology inference and search speed, to experimentally evaluate the methods suggested in this paper, which we applied to LUBM8000 (1.1 billion triples, 155 gigabytes). When compared with WebPIE, a representative mapreduce algorithm-based scalable ontology reasoner, the proposed approach showed a throughput improvement of 320% (62k/s) over WebPIE (19k/s).

Land Use Optimization using Genetic Algorithms - Focused on Yangpyeong-eup - (유전 알고리즘을 적용한 토지이용 최적화 배분 연구 - 양평군 양평읍 일대를 대상으로 -)

  • Park, Yoonsun;Lee, Dongkun;Yoon, Eunjoo;Mo, Yongwon;Leem, Jihun
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.44-56
    • /
    • 2017
  • Sustainable development is important because the ultimate objective is efficient development combining the economic, social, and environmental aspects of urban conservation. Despite Korea's rapid urbanization and economic development, the distribution of resources is inefficient, and land-use is not an exception. Land use distribution is difficult, as it requires considering a variety of purposes, whose solutions lie in a multipurpose optimization process. In this study, Yangpyeong-eup, Yangpyeong, Gyeonggi-do, is selected, as the site has ecological balance, is well-preserved, and has the potential to support population increases. Further, we have used the genetic algorithm method, as it helps to evolve solutions for complex spatial problems such as planning and distribution of land use. This study applies change to the way of mutation. With four goals and restrictions of area, spatial objectives, minimizing land use conversion, ecological conservation, maximizing economic profit, restricting area to a specific land use, and setting a fixed area, we developed an optimal planning map. No urban areas at the site needed preservation and the high urban area growth rate coincided with the optimization of purpose and maximization of economic profit. When the minimum point of the fitness score is the convergence point, we found optimization occurred approximately at 1500 generations. The results of this study can support planning at Yangpyeong-eup.ausative relationship between the perception of improving odor regulation and odor acceptance.