• Title/Summary/Keyword: MAP algorithm

Search Result 2,002, Processing Time 0.023 seconds

Prediction of karst sinkhole collapse using a decision-tree (DT) classifier

  • Boo Hyun Nam;Kyungwon Park;Yong Je Kim
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.441-453
    • /
    • 2024
  • Sinkhole subsidence and collapse is a common geohazard often formed in karst areas such as the state of Florida, United States of America. To predict the sinkhole occurrence, we need to understand the formation mechanism of sinkhole and its karst hydrogeology. For this purpose, investigating the factors affecting sinkholes is an essential and important step. The main objectives of the presenting study are (1) the development of a machine learning (ML)-based model, namely C5.0 decision tree (C5.0 DT), for the prediction of sinkhole susceptibility, which accounts for sinkhole/subsidence inventory and sinkhole contributing factors (e.g., geological/hydrogeological) and (2) the construction of a regional-scale sinkhole susceptibility map. The study area is east central Florida (ECF) where a cover-collapse type is commonly reported. The C5.0 DT algorithm was used to account for twelve (12) identified hydrogeological factors. In this study, a total of 1,113 sinkholes in ECF were identified and the dataset was then randomly divided into 70% and 30% subsets for training and testing, respectively. The performance of the sinkhole susceptibility model was evaluated using a receiver operating characteristic (ROC) curve, particularly the area under the curve (AUC). The C5.0 model showed a high prediction accuracy of 83.52%. It is concluded that a decision tree is a promising tool and classifier for spatial prediction of karst sinkholes and subsidence in the ECF area.

Development of Regularized Expectation Maximization Algorithms for Fan-Beam SPECT Data (부채살 SPECT 데이터를 위한 정칙화된 기댓값 최대화 재구성기법 개발)

  • Kim, Soo-Mee;Lee, Jae-Sung;Lee, Soo-Jin;Kim, Kyeong-Min;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.464-472
    • /
    • 2005
  • Purpose: SPECT using a fan-beam collimator improves spatial resolution and sensitivity. For the reconstruction from fan-beam projections, it is necessary to implement direct fan-beam reconstruction methods without transforming the data into the parallel geometry. In this study, various fan-beam reconstruction algorithms were implemented and their performances were compared. Materials and Methods: The projector for fan-beam SPECT was implemented using a ray-tracing method. The direct reconstruction algorithms implemented for fan-beam projection data were FBP (filtered backprojection), EM (expectation maximization), OS-EM (ordered subsets EM) and MAP-EM OSL (maximum a posteriori EM using the one-step late method) with membrane and thin-plate models as priors. For comparison, the fan-beam protection data were also rebinned into the parallel data using various interpolation methods, such as the nearest neighbor, bilinear and bicubic interpolations, and reconstructed using the conventional EM algorithm for parallel data. Noiseless and noisy projection data from the digital Hoffman brain and Shepp/Logan phantoms were reconstructed using the above algorithms. The reconstructed images were compared in terms of a percent error metric. Results: for the fan-beam data with Poisson noise, the MAP-EM OSL algorithm with the thin-plate prior showed the best result in both percent error and stability. Bilinear interpolation was the most effective method for rebinning from the fan-beam to parallel geometry when the accuracy and computation load were considered. Direct fan-beam EM reconstructions were more accurate than the standard EM reconstructions obtained from rebinned parallel data. Conclusion: Direct fan-beam reconstruction algorithms were implemented, which provided significantly improved reconstructions.

Comparison of Forest Carbon Stocks Estimation Methods Using Forest Type Map and Landsat TM Satellite Imagery (임상도와 Landsat TM 위성영상을 이용한 산림탄소저장량 추정 방법 비교 연구)

  • Kim, Kyoung-Min;Lee, Jung-Bin;Jung, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.449-459
    • /
    • 2015
  • The conventional National Forest Inventory(NFI)-based forest carbon stock estimation method is suitable for national-scale estimation, but is not for regional-scale estimation due to the lack of NFI plots. In this study, for the purpose of regional-scale carbon stock estimation, we created grid-based forest carbon stock maps using spatial ancillary data and two types of up-scaling methods. Chungnam province was chosen to represent the study area and for which the $5^{th}$ NFI (2006~2009) data was collected. The first method (method 1) selects forest type map as ancillary data and uses regression model for forest carbon stock estimation, whereas the second method (method 2) uses satellite imagery and k-Nearest Neighbor(k-NN) algorithm. Additionally, in order to consider uncertainty effects, the final AGB carbon stock maps were generated by performing 200 iterative processes with Monte Carlo simulation. As a result, compared to the NFI-based estimation(21,136,911 tonC), the total carbon stock was over-estimated by method 1(22,948,151 tonC), but was under-estimated by method 2(19,750,315 tonC). In the paired T-test with 186 independent data, the average carbon stock estimation by the NFI-based method was statistically different from method2(p<0.01), but was not different from method1(p>0.01). In particular, by means of Monte Carlo simulation, it was found that the smoothing effect of k-NN algorithm and mis-registration error between NFI plots and satellite image can lead to large uncertainty in carbon stock estimation. Although method 1 was found suitable for carbon stock estimation of forest stands that feature heterogeneous trees in Korea, satellite-based method is still in demand to provide periodic estimates of un-investigated, large forest area. In these respects, future work will focus on spatial and temporal extent of study area and robust carbon stock estimation with various satellite images and estimation methods.

Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color (컬러 영상에서 평균 이동 클러스터링과 단계별 영역 병합을 이용한 자동 원료 분류 알고리즘)

  • Kim, SangJun;Kwak, JoonYoung;Ko, ByoungChul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.425-435
    • /
    • 2016
  • In this paper, we propose a classification model by analyzing raw material images recorded using a color CCD camera to automatically classify good and defective agricultural products such as rice, coffee, and green tea, and raw materials. The current classifying agricultural products mainly depends on visual selection by skilled laborers. However, classification ability may drop owing to repeated labor for a long period of time. To resolve the problems of existing human dependant commercial products, we propose a vision based automatic raw material classification combining mean shift clustering and stepwise region merging algorithm. In this paper, the image is divided into N cluster regions by applying the mean-shift clustering algorithm to the foreground map image. Second, the representative regions among the N cluster regions are selected and stepwise region-merging method is applied to integrate similar cluster regions by comparing both color and positional proximity to neighboring regions. The merged raw material objects thereby are expressed in a 2D color distribution of RG, GB, and BR. Third, a threshold is used to detect good and defective products based on color distribution ellipse for merged material objects. From the results of carrying out an experiment with diverse raw material images using the proposed method, less artificial manipulation by the user is required compared to existing clustering and commercial methods, and classification accuracy on raw materials is improved.

Building a Model for Estimate the Soil Organic Carbon Using Decision Tree Algorithm (의사결정나무를 이용한 토양유기탄소 추정 모델 제작)

  • Yoo, Su-Hong;Heo, Joon;Jung, Jae-Hoon;Han, Su-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.29-35
    • /
    • 2010
  • Soil organic carbon (SOC), being a help to forest formation and control of carbon dioxide in the air, is found to be an important factor by which global warming is influenced. Excavating the samples by whole area is very inefficient method to discovering the distribution of SOC. So, the development of suitable model for expecting the relative amount of the SOC makes better use of expecting the SOC. In the present study, a model based on a decision tree algorithm is introduced to estimate the amount of SOC along with accessing influencing factors such as altitude, aspect, slope and type of trees. The model was applied to a real site and validated by 10-fold cross validation using two softwares, See 5 and Weka. From the results given by See 5, it can be concluded that the amount of SOC in surface layers is highly related to the type of trees, while it is, in middle depth layers, dominated by both type of trees and altitude. The estimation accuracy was rated as 70.8% in surface layers and 64.7% in middle depth layers. A similar result was, in surface layers, given by Weka, but aspect was, in middle depth layers, found to be a meaningful factor along with types of trees and altitude. The estimation accuracy was rated as 68.87% and 60.65% in surface and middle depth layers. The introduced model is, from the tests, conceived to be useful to estimation of SOC amount and its application to SOC map production for wide areas.

Mining Intellectual History Using Unstructured Data Analytics to Classify Thoughts for Digital Humanities (디지털 인문학에서 비정형 데이터 분석을 이용한 사조 분류 방법)

  • Seo, Hansol;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.141-166
    • /
    • 2018
  • Information technology improves the efficiency of humanities research. In humanities research, information technology can be used to analyze a given topic or document automatically, facilitate connections to other ideas, and increase our understanding of intellectual history. We suggest a method to identify and automatically analyze the relationships between arguments contained in unstructured data collected from humanities writings such as books, papers, and articles. Our method, which is called history mining, reveals influential relationships between arguments and the philosophers who present them. We utilize several classification algorithms, including a deep learning method. To verify the performance of the methodology proposed in this paper, empiricists and rationalism - related philosophers were collected from among the philosophical specimens and collected related writings or articles accessible on the internet. The performance of the classification algorithm was measured by Recall, Precision, F-Score and Elapsed Time. DNN, Random Forest, and Ensemble showed better performance than other algorithms. Using the selected classification algorithm, we classified rationalism or empiricism into the writings of specific philosophers, and generated the history map considering the philosopher's year of activity.

Object Extraction Technique using Extension Search Algorithm based on Bidirectional Stereo Matching (양방향 스테레오 정합 기반 확장탐색 알고리즘을 이용한 물체추출 기법)

  • Choi, Young-Seok;Kim, Seung-Geun;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, to extract object regions in stereo image, we propose an enhanced algorithm that extracts objects combining both of brightness information and disparity information. The approach that extracts objects using both has been studied by Ping and Chaohui. In their algorithm, the segmentation for an input image is carried out using the brightness, and integration of segmented regions in consideration of disparity information within the previously segmented regions. In the regions where the brightness values between object regions and background regions are similar, however, the segmented regions probably include both of object regions and background regions. It may cause incorrect object extraction in the merging process executed in the unit of the segmented region. To solve this problem, in proposed method, we adopt the merging process which is performed in pixel unit. In addition, we perform the bi-directional stereo matching process to enhance reliability of the disparity information and supplement the disparity information resulted from a single directional matching process. Further searching for disparity is decided by edge information of the input image. The proposed method gives good performance in the object extraction since we find the disparity information that is not extracted in the traditional methods. Finally, we evaluate our method by experiments for the pictures acquired from a real stereoscopic camera.

Automatic Algorithms of Rebar Quantity Take-Off of Green Frame by Composite Precast Concrete Members (합성 PC부재에 의한 그린 프레임의 철근물량 산출 자동화 알고리즘)

  • Lee, Sung-Ho;Kim, Seon-Hyung;Lee, Goon-Jae;Kim, Sun-Kuk;Joo, Jin-Kyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.1
    • /
    • pp.118-128
    • /
    • 2012
  • As the bearing wall structure, which has been widely applied to domestic apartment buildings since the 1980s, cause many problems during remodeling of buildings, the government encourages constructors to adopt flat plate or rahmen structure through legal incentives. In line with such a trend, the green frame, an eco-friendly rahmen structure that has removed the shortcomings of previous structures, was developed to enhance structural safety, constructability, and eco-friendliness. The construction of green frame can reduce the labor cost and facilitate the composition of iron bars to reduce rebar loss through calculating the quality and establishing the bar bending schedule automatically on the precast concrete member data collected over the design phase. Therefore, the purpose of this study is to develop the algorithm to automate the calculation of iron bar volume for the green frame designed on composite precast concrete members. Automated algorithm to calculate concrete structural design information and design information. Practices through the application site should prove efficacy. The database established by the developed algorithm will automate the establishment of iron bar processing map and bar cutting list and the calculation of optimal composition and order volume to minimize the rebar loss. This will also reduce the expenses on management staff and overall construction cost through the minimization of rebar loss.

Inductive Inverse Kinematics Algorithm for the Natural Posture Control (자연스러운 자세 제어를 위한 귀납적 역운동학 알고리즘)

  • Lee, Bum-Ro;Chung, Chin-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.367-375
    • /
    • 2002
  • Inverse kinematics is a very useful method for control]ing the posture of an articulated body. In most inverse kinematics processes, the major matter of concern is not the posture of an articulated body itself but the position and direction of the end effector. In some applications such as 3D character animations, however, it is more important to generate an overall natural posture for the character rather than place the end effector in the exact position. Indeed, when an animator wants to modify the posture of a human-like 3D character with many physical constraints, he has to undergo considerable trial-and-error to generate a realistic posture for the character. In this paper, the Inductive Inverse Kinematics(IIK) algorithm using a Uniform Posture Map(UPM) is proposed to control the posture of a human-like 3D character. The proposed algorithm quantizes human behaviors without distortion to generate a UPM, and then generates a natural posture by searching the UPM. If necessary, the resulting posture could be compensated with a traditional Cyclic Coordinate Descent (CCD). The proposed method could be applied to produce 3D-character animations based on the key frame method, 3D games and virtual reality.

Image Matching for Orthophotos by Using HRNet Model (HRNet 모델을 이용한 항공정사영상간 영상 매칭)

  • Seong, Seonkyeong;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.597-608
    • /
    • 2022
  • Remotely sensed data have been used in various fields, such as disasters, agriculture, urban planning, and the military. Recently, the demand for the multitemporal dataset with the high-spatial-resolution has increased. This manuscript proposed an automatic image matching algorithm using a deep learning technique to utilize a multitemporal remotely sensed dataset. The proposed deep learning model was based on High Resolution Net (HRNet), widely used in image segmentation. In this manuscript, denseblock was added to calculate the correlation map between images effectively and to increase learning efficiency. The training of the proposed model was performed using the multitemporal orthophotos of the National Geographic Information Institute (NGII). In order to evaluate the performance of image matching using a deep learning model, a comparative evaluation was performed. As a result of the experiment, the average horizontal error of the proposed algorithm based on 80% of the image matching rate was 3 pixels. At the same time, that of the Zero Normalized Cross-Correlation (ZNCC) was 25 pixels. In particular, it was confirmed that the proposed method is effective even in mountainous and farmland areas where the image changes according to vegetation growth. Therefore, it is expected that the proposed deep learning algorithm can perform relative image registration and image matching of a multitemporal remote sensed dataset.