• Title/Summary/Keyword: MANDO

Search Result 113, Processing Time 0.027 seconds

Controller Design for Electric Parking Brake(EPB) System (전자제어식 주차 브레이크(EPB) 시스템의 제어기 설계)

  • Lee, Doo-Ho;Lee, Choong-Woo;Chung, Han-Byul;Chung, Chung-Choo;Son, Young-Seop;Yoon, Pal-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1842-1845
    • /
    • 2006
  • 본 논문에서는 차량용 전자제어식 주차 브레이크(Electric Parking Brake, EPB) 시스템 제어에 효과적인 제어기를 논의한다. 이를 위하여 EPB 시스템의 동작 요건과 고유 특성을 고려하여 제어 사양을 정하고 이를 만족시키는 세 가지 제어기(Bang-bang, 선형 P, 비선형 P 제어기)를 제안한다. 또한 제안된 제어기들의 특성 및 성능을 과도응답과 강인성 측면에서 분석하였다. 이를 위해 EPB 시스템을 주파수 영역과 시간 영역에서 모델링하고, 설계된 제어기들의 성능을 모의실험을 통해 비교, 검증한다.

  • PDF

A Study on Near Cut-In Performance Comparison on Adaptive Cruise Control Stop&Go (ACC Stop&Go 시스템의 근접 Cut-In 성능 비교에 대한 연구)

  • Lee, Dong-Han;Cho, Cheol-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Adaptive cruise control Stop&Go system has been developed to reduce the driver's workload on highway or public road. This system is characterized by a moderate control of engine and brake actuator. A control system capable of modeling driver's driving characteristics has been constructed to provide natural vehicle behavior in full speed driving. But, ACC Stop&Go system has some limitations. One of the limitations is a detection limitation on near cut-in situation. This paper presents development of the near cut-in test procedure, finding of the limitation value on near cut-in scenario and performance comparisons on ACC Stop&Go system.

CONTROL PHILOSOPHY AND ROBUSTNESS OF ELECTRONIC STABILITY PROGRAM FOR THE ENHANCEMENT OF VEHICLE STABILITY

  • Kim, D.S.;Hwang, I.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • This paper describes the control philosophy of ESP(Electronic Stability Program) which consists of the stability control the fault diagnosis and the fault tolerant control. Besides the functional performance of the stability control, robustness of control and fault diagnosis is focused to avoid the unnecessary activation of the controller. The look-up tables are mentioned to have the accurate target yaw rate of the vehicle and obtained from vehicle tests for the whole operation range of the steering wheel angle and the vehicle speed. The wheel slip control with a design goal of wheel slip invariance is implemented for the yaw compensation and the target wheel slip is determined by difference between the target yaw rate and actual yaw rate. Since the ESP has a high severity level and the robust control is required, the robustness margin for the stability control is determined according to several uncertainties and the robust fault diagnosis is performed. Both computer simulation and test results are shown in this paper.

Steady State Thermal Analysis of Brushless Motor for Rack Type Electric Power Steering Using Equivalent Thermal Resistance (등가 열저항을 이용한 R-EPS용 전동기의 정상상태 열해석)

  • Oh, Young-Jin;Ha, Kyung-Ho;Im, Yang-Su;Hong, Jung-Pyo;Jin, Jong-Hak;Jung, Dae-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.84-86
    • /
    • 2001
  • This paper deals with the characteristic and thermal analysis of brushless motors for Rack assist type Electric Power Steering(REPS). The performance of permanent magnet is under the influence of temperature. To predict the motor performance, the thermal analysis is necessary. The equivalent thermal network is composed of the thermal resistance and the temperature of major parts is calculated according to the operating condition.

  • PDF

Antenna Array Compensation for Improved DOA Estimation (도래각 추정 성능 향상을 위한 배열 안테나 보정 기법)

  • Song, Heemang;Cho, Seunghoon;Lee, Jaeeun;Jeong, Seonghee;Shin, Hyun-Chool
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.786-791
    • /
    • 2015
  • This paper presents a signal processing method for calibrating an antenna array to solve the inaccuracy of Direction of Arrival(DOA). Using reference data quantifying amplitude and phase distortion levels for each angles, we compensate each radar array’s amplitude and phase distortion. The proposed method is applied to the Bartlett, Capon and MUSIC algorithms, Using 77 GHz Frequency Modulated Continuous Wave(FMCW) Long Range Radar(LRR) signal, we experimentally demonstrate the performance improvement after the proposed compensation.

A Study on the Squeal Noise Instability Analysis on Caliper Brake (캘리퍼 브레이크 스퀼 소음의 불안정성 해석에 관한 연구)

  • Lee, Junghwan;Kim, Seonghwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.957-965
    • /
    • 2013
  • This paper deals with analytical methods for low frequency and high frequency brake squeal noise on brake-rear caliper. In order to improve low frequency and high frequency squeal noise, we take survey caliper bracket shape parameters and housing shape parameters. Besides, using the combination of bracket and housing parameter were surveyed. Thus, using the combination of bracket Alt_05 and housing Alt_45 specifications, instability analysis and brake dynamo test were carried out. Based upon the two models, low and high frequency squeal noise of base model were improved. But, for 6.0 kHz frequency noise, which is not improved, it needs to additionally study on instability analysis and combination of the other brake components.

Adaptive offset decision of current sensor (적응형 전류센서 offset 보정량 검출)

  • Lee, Yoon-Hyung;Han, Sang-Whi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.438-440
    • /
    • 2012
  • 본 논문은 EPS ECU 에 사용되고 있는 전류센서의 offset 결정에 대해 효율적인 방법을 제시한다. 센서의 offset 은 EPS 시스템에서 모터의 토크리플을 야기하기 하므로, 토크리플을 줄이기 위해 offset 을 보정하여 모터를 제어하게 된다. 일반적으로 EPS ECU 에 대해 offset 보정 방법은 ECU 생산시 센서의 offset 값을 측정하여 EEPROM 에 기록하고, 모터 제어시 활용한다. 이러한 방식은 ECU 생산의 cycle time 을 늘릴 뿐만 아니라, 센서 및 주변 회로의 노후로 인해 MCU 의 입력으로 들어오는 offset 값의 변화에 대해 대응할 수 없는 한계를 가진다. 언급된 문제를 보완하기 위해 본 논문은 ECU 생산시 offset 을 EEPROM 에 기록하는 것이 아니라 ECU 가 ON 때마다 센싱값을 정확하게 취득하여 offset 값을 선정하고 '강인한 오차 기준' 함수를 사용하여 노이즈의 영향을 줄이는 방법을 제시한다.

Design of Scheduling on AUTOSAR OS With Shared Resource (AUTOSAR 기반 공유자원이용 스케줄링 구조)

  • Choi, Junyeol;Cho, Joonhyung;Choi, Yunja
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.6
    • /
    • pp.279-288
    • /
    • 2018
  • As a result of the technological advances in the E / E system, automotive system can provide advanced functions for safety and comfort. In addition, mechanical systems is changed to the electronic system. And the systems perform cooperative functions through communication. So the E / E system becomes more complicated as the size of the system increases. In order to secure the safety of complicated E / E system, ISO26262 standard require that Freedom from Interference and Sufficient Independence be met. In this paper, we propose a software scheduling method that can guarantee the independence between decomposed components after software decomposition and software development of ASIL D level EPB (Electronic Parking Brake) system.

Robust Wheel Slip Control for Brake-by-Wire System (Brake-by-Wire 시스템을 위한 강인한 휠 슬립 제어)

  • Hong Daegun;Huh Kunsoo;Kang Hyung-Jin;Yoon Paljoo;Hwang Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2005
  • Wheel-slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS systems. But, in order to achieve the superior braking performance through the wheel-slip control, real-time information such as the tire braking force is required. For example, in the case of EHB (Electro-Hydraulic Brake) systems, the tire braking force cannot be measured directly, but can be approximated based on the characteristics of the brake disk-pad friction. The friction characteristics can change significantly depending on aging of the brake, moisture on the contact area, heat etc. In this paper, a wheel slip The proposed wheel slip control system is composed of two subsystems: braking force monitor and robust slip controller In the brake force monitor subsystem, the tire braking forces as well as the brake disk-pad friction coefficient are estimated considering the friction variation between the brake pad and disk. The robust wheel slip control subsystem is designed based on sliding mode control methods and follows the target wheel-slip using the estimated tire braking forces. The proposed sliding mode controller is robust to the uncertainties in estimating the braking force and brake disk-pad friction. The performance of the proposed wheel-slip control system is evaluated in various simulations.