• Title/Summary/Keyword: MALDI-TOF MS/MS

Search Result 280, Processing Time 0.026 seconds

Occurrence of Microcystin-Containing Toxic Water Blooms in Central India

  • Agrawal Manish K.;Ghosh Shubhro K.;Bagchi Divya;Weckesser Juergen;Erhard Marcel;Bagchi Suvendra N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.212-218
    • /
    • 2006
  • Three out of fourteen Microcystis-dominant cyanobacterial blooms in Central India were found to be toxic to mice ($LD_{50}$ ranging from 35-450 mg bloom dry mass/kg body weight). The liver architecture of the treated mice showed characteristic symptoms of hepatotoxicity relative to the untreated controls, with increased enzyme activities of serum lactate dehydrogenase (LDH), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), and serum glutamate pyruvate transaminase (SGPT). RP-HPLC revealed the presence of microcystin-LR, microcystin-RR, and desmethyl microcystin-RR in the given region to maximum amounts of 390, 1,030, and $860{\mu}g/g$ bloom dry weight, respectively, corresponding to a maximum of 2.8 mg/l microcystin-LR in the lake water. Further confirmation of the microcystin variants was conducted using a MALDI-TOF MS analysis.

Enrichment of Peptides using Novel C8-functionalized Magnetic Nanoparticles for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis

  • Song, Sun-Mi;Yang, Hyo-Jik;Kim, Jin-Hee;Shin, Seong-Jae;Park, Eun-Hye;Kim, Jeong-Kwon
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.53-56
    • /
    • 2011
  • [ $C_8$ ]functionalized magnetic nanoparticles were synthesized by coating magnetic $Fe_3O_4$ nanoparticles with silicaamine groups using 3-aminopropyltriethoxysilane and by subsequently modifying the amine groups with chloro(dimethyl)octylsilane to produce octyl groups on the surface of the MNPs. The $C_8$-functionalized MNPs were used to enrich peptides from tryptic protein digests of myoglobin and ${\alpha}$-casein. The enriched peptides were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS was also used to investigate desalting of the $C_8$-functionalized MNPs. Sample solutions were prepared in 1.0 M NaCl, and the successful removal of salt was observed. Enrichment with $C_8$-functionalized MNPs was very effective for separating and concentrating tryptic peptides.

Proteome Analysis of Recombinant CHO Cells Under Hyperosmotic Stress

  • Lee, Mun-Su;Kim, Gyeong-Uk;Kim, Yeong-Hwan;Lee, Gyun-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.311-314
    • /
    • 2003
  • Under hyperosmotic stress, rCHO cells display decreased specific growth rate $({\mu})$ and increased specific antibody productivity $(q_{Ab})$. The effects of hyperosmotic stress on batch culture cellular dynamics are not well understood. To this end, we conducted a proteome profile of rCHO cells, using 2D-gel, MALDI-TOF-MS and MS/MS. As a result, the proteome profile of rCHO cells could be established using 41 identified proteins. Based on this proteome profile of rCHO cells, we have found at least 8 differently expressed spots at hyperosmotic osmolality (450 mOsm/kg). Among these spots, two metabolic enzymes were found to be up-regulated (pyruvate kinase and GAPDH), while down-regulated protein was identified as tubulin. It shows that hyperosmotic stress can alter metabolic state, by up-regulated activities of two glycolysis enzymes, which could lead to activate the generation of metabolic energy. Tubulin expression was down-regulated, suggesting a reduction of cell division. Finally, the increased conversion energy could leads to improve overall productivity.

  • PDF

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2004.04a
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF

Muscle Proteome Analysis for the Effect of Panax Ginseng Extracts in Chicken: Identification of Proteins Using Peptide Mass Fingerprinting

  • Jung, K.C.;Yu, S.L.;Lee, Y.J.;Choi, K.D.;Choi, J.S.;Kim, Y.H.;Jang, B.G.;Kim, S.H.;Hahm, D.H.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.922-926
    • /
    • 2005
  • The present study was aimed to investigate proteome affected by Panax ginseng extracts in chicken muscles. The whole muscle proteins from chicken fed boiled extracts of 0% (control), 1%, 3%, and 5% Panax ginseng in water were separated by two-dimensional electrophoresis (2-DE) gels using immobilized non-linear gradient (pH 3-10) strips. More than 300 protein spots were detected on silver staining gels. Among them, four protein spots were distinctively up-regulated by Panax ginseng treatments and further investigated by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The obtained MS data were searched against SwissProt database using the Mascot search engine. The up-regulated proteins were finally identified as $\alpha$-tropomyosin (2 spots), triosephosphate isomerase, and one unknown protein. Based on the known functions of the identified proteins, they are highly related to muscle development and enhanced immunity in chickens. These proteins can give valuable information of biochemical roles for Panax ginseng in chicken meats.

Proteomic Approach to the Cytotoxicity of 5-FU(Fluorouracil) in Colon Cancer Cells (대장암 세포에서 5-FU(Fluorouracil)의 세포독성과 관련된 단백체 분석)

  • Lee, Seo-Young;Song, Jin-Su;Roh, Si-Hun;Kim, Geun-Tae;Hong, Soon-Sun;Kim, Hie-Joon;Kwon, Sung-Won;Park, Jeong-Hill
    • YAKHAK HOEJI
    • /
    • v.53 no.3
    • /
    • pp.145-150
    • /
    • 2009
  • We evaluated cytotoxic effect based on the MTT assay and identified altered proteins in 5-FU(fluorouracil) treated HT29 cells using two-dimensional gel electrophoresis and MALDI-TOF/TOF-MS. As proteins inducing apoptosis, siah binding protein 1 and p47 protein isoform a were up-regulated and tumor protein translationally-controlled 1 was down-regulated by 5-FU treatment. And mannose 6 phosphate receptor binding protein 1 controls DNA mismatch repair system was increased. We suggest 5-FU promotes a cytotoxicity under the action of these proteins in colon cancer cells.

A Sensitive Method for Identification of N-Glycosylation Sites and the Structures of N-Glycans Using Nano-LC-MS/MS (나노 액체크로마토그래피-텐덤 질량분석기를 이용하여 N-당질화 위치 및 N-당사슬 구조 규명을 위한 방법)

  • Cho, Young-Eun;Kim, Sook-Kyung;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.57 no.4
    • /
    • pp.250-257
    • /
    • 2013
  • Biosimilars are important drugs in medicine and contain many glycosylated proteins. Thorough analysis of the glycosylated protein is a prerequisite for evaluation of biosimilar glycan drugs. A method to assess the diversity of N-glycosylation sites and N-glycans from biosimilar glycan drugs has been developed using two separate methods, LC-MS/MS and MALDI-TOF MS, respectively. Development of sensitive, accurate, and efficient methods for evaluation of glycoproteins is still needed. In this study, analysis of both N-glycosylation sites and N-glycans of glycoprotein was performed using the same LC-MS/MS with two different nano-LC columns, nano-C18 and nano-porous graphitized carbon (nano-PGC) columns. N-glycosylated proteins, including RNAse B (one N-glycosylation site), Fetuin (three sites), and ${\alpha}$-1 acid glycoprotein (four sites), were used, and small amounts of each protein were used for identification of N-glycosylation sites. In addition, high mannose N-glycans (one type of typical glycan structure), Mannose 5 and 9, eluted from RNAse B, were successfully identified using nano-PGC-LC MS/MS analysis, and the abundance of each glycan from the glycoprotein was calculated. This study demonstrated an accurate and efficient method for determination of N-glycosylation sites and N-glycans of glycoproteins based on high sensitive LC-MS/MS using two different nano-columns; this method could be applied for evaluation of the quality of various biosimilar drugs containing N-glycosylation groups.

Alteration of Phospholipids during the Mitophagic Process in Lung Cancer CellsS

  • Lee, Jae Won;Cho, Kyung Mi;Jung, Jae Hun;Tran, Quangdon;Jung, Woong;Park, Jongsun;Kim, Kwang Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1790-1799
    • /
    • 2016
  • Matrix assisted laser desorption ionization (MALDI)-time of flight/mass spectrometry (TOF/MS) was applied to investigate alterations in phospholipids in mitophagic cancer cells. Several phospholipids, including phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylinositols (PIs), were successfully analyzed in control and mitophagy-induced H460 cells in the positive and negative ion modes. Principal component analysis was applied to differentiate the two groups. The upregulated and downregulated phospholipid species in the mitophagic cells were also represented in a heatmap. In the volcano plot (fold change > 1.3 and p value < 0.01), individual species of seven PCs, two SMs, and three PIs were selected as differentially regulated phospholipids. In particular, almost all the molecular species of PC, SM, and PI were downregulated in the mitophagic cells. Quantification of these lipids indicated that mitophagy induces altered metabolism of phospholipids. Therefore, phospholipid alterations during the mitophagic process of lung cancer cells were well characterized by MALDI-TOF/MS.

Proteomic Analysis of Global Changes in Protein Expression During Exposure of Gamma Radiation in Bacillus sp. HKG 112 Isolated from Saline Soil

  • Gupta, Anil Kumar;Pathak, Rajiv;Singh, Bharat;Gautam, Hemlata;Kumar, Ram;Kumar, Raj;Arora, Rajesh;Gautam, Hemant K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.574-581
    • /
    • 2011
  • A Gram-positive bacterium was isolated from the saline soils of Jangpura (U.P.), India, and showed high-level of radiation-resistant property and survived upto 12.5 kGy dose of gamma radiation. The 16S rDNA sequence of this strain was examined, identified as Bacillus sp. strain HKG 112, and was submitted to the NCBI GenBank (Accession No. GQ925432). The mechanism of radiation resistance and gene level expression were examined by proteomic analysis of whole-cell extract. Two proteins, 38 kDa and 86.5 kDa excised from SDS-PAGE, which showed more significant changes after radiation exposure, were identified by MALDI-TOF as being flagellin and S-layer protein, respectively. Twenty selected 2-DE protein spots from the crude extracts of Bacillus sp. HKG 112, excised from 2- DE, were identified by liquid chromatography mass spectrometry (LC-MS) out of which 16 spots showed significant changes after radiation exposure and might be responsible for the radiation resistance property. Our results suggest that the different responses of some genes under radiation for the expression of radiation-dependent proteins could contribute to a physiological advantage and would be a significant initial step towards a fullsystem understanding of the radiation stress protection mechanisms of bacteria in different environments.

Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

  • Park, Sangryeol;Gupta, Ravi;Krishna, R.;Kim, Sun Tae;Lee, Dong Yeol;Hwang, Duk-ju;Bae, Shin-Chul;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.