• 제목/요약/키워드: MAE(mean absolute error)

검색결과 196건 처리시간 0.02초

Dental age estimation using the pulp-to-tooth ratio in canines by neural networks

  • Farhadian, Maryam;Salemi, Fatemeh;Saati, Samira;Nafisi, Nika
    • Imaging Science in Dentistry
    • /
    • 제49권1호
    • /
    • pp.19-26
    • /
    • 2019
  • Purpose: It has been proposed that using new prediction methods, such as neural networks based on dental data, could improve age estimation. This study aimed to assess the possibility of exploiting neural networks for estimating age by means of the pulp-to-tooth ratio in canines as a non-destructive, non-expensive, and accurate method. In addition, the predictive performance of neural networks was compared with that of a linear regression model. Materials and Methods: Three hundred subjects whose age ranged from 14 to 60 years and were well distributed among various age groups were included in the study. Two statistical software programs, SPSS 21 (IBM Corp., Armonk, NY, USA) and R, were used for statistical analyses. Results: The results indicated that the neural network model generally performed better than the regression model for estimation of age with pulp-to-tooth ratio data. The prediction errors of the developed neural network model were acceptable, with a root mean square error (RMSE) of 4.40 years and a mean absolute error (MAE) of 4.12 years for the unseen dataset. The prediction errors of the regression model were higher than those of the neural network, with an RMSE of 10.26 years and a MAE of 8.17 years for the test dataset. Conclusion: The neural network method showed relatively acceptable performance, with an MAE of 4.12 years. The application of neural networks creates new opportunities to obtain more accurate estimations of age in forensic research.

추천시스템의 희소성이 예측 정확도에 미치는 영향에 관한 연구 (The Effect of Data Sparsity on Prediction Accuracy in Recommender System)

  • 김선옥;이석준
    • 인터넷정보학회논문지
    • /
    • 제8권6호
    • /
    • pp.95-102
    • /
    • 2007
  • 협력적 필터링을 이용한 추천시스템은 희소성의 문제로 인해 예측의 정확도에 대한 신뢰성에 문제가 있다. 이는 선호도 평가치의 희소성이 크면 이웃선정과정에 문제가 있을 뿐만 아니라 예측의 정확도를 떨어뜨린다. 본 논문에서는 사용자의 응답 희소성에 따른 MAE의 변화를 조사하였으며 희소성에 따라 집단을 분류하고 분류된 집단에 따른 MAE는 유의적인 차이가 있는 지를 분석하였다. 그리고 희소성 문제로 인한 집단 간의 예측 정확도를 높이기 위한 방법으로 희소성이 있는 아이템을 선별하여 이들 중에서 선호도 응답이 많은 사용자 고객의 선호도 평균값을 선호도 평가 치로 대치시켜 희소성을 완화하여 추천시스템의 예측 정확도가 높아졌음을 연구하였다.

  • PDF

이중 마이크로폰을 이용한 비음수 행렬분해 기반 다중음원 도래각 예측 (Nonnegative Matrix Factorization Based Direction-of-Arrival Estimation of Multiple Sound Sources Using Dual Microphone Array)

  • 전광명;김홍국;유승우
    • 전자공학회논문지
    • /
    • 제54권2호
    • /
    • pp.123-129
    • /
    • 2017
  • 본 논문에서는 이중 마이크로폰 배열을 이용하여 비음수 행렬분해(nonnegative matrix factorization, NMF) 기반으로 다중음원의 도래각을 추정하는 새로운 방법을 제안한다. 우선 이중 마이크로폰 배열에 들어온 음향 신호들을 연속된 분석프레임으로 분할한 후, 각 프레임에 대해 조향응답파워 위상변환(steered-response power phase transform, SRP-PHAT) 빔형성기를 적용하여 스테레오 신호들을 시간-방향 영역으로 표현한다. 이러한 SRP-PHAT의 시간-방향 출력값들은 사전에 정의된 프레임 수만큼 누적하여 시간-방향 블록으로 정의한다. 다음으로, 잡음에 강건한 도래각 추정을 위하여, 각 시간-방향 블록을 블록차감 기법을 사용하여 매 프레임에 대해 정규화한다. 이후, 다중음원 환경에서 각 음원의 방향을 클러스터링하기 위해 정규화된 시간-방향 블록에 비지도(unsupervised) NMF를 적용한다. 구체적으로, 음원의 개수와 이들의 도래각을 추정하는데 각각 활성 및 기저 행렬들을 사용한다. 제안된 방법의 도래각 추정 성능을 평가하기 위해 이중 마이크로폰 배열로부터 입력된 [$-35{\circ}$, 5m], [$12{\circ}$, 4m], 그리고 [$38{\circ}$, 4.m]에 각각 위치한 세 가지 음원들에 대한 추정 오차의 절대 평균(mean absolute error, MAE) 및 오차의 표준편차를 측정하였다. 실험 결과. 제안된 방법은 기존의 SRP-PHAT 기반 도래각 추정방법에 비해 상대적으로 MAE를 56.83% 줄일 수 있었다.

정지 궤도 기상 위성을 이용한 기계 학습 기반 강우 강도 추정: 한반도 여름철을 대상으로 (Rainfall Intensity Estimation Using Geostationary Satellite Data Based on Machine Learning: A Case Study in the Korean Peninsula in Summer)

  • 신예지;한대현;임정호
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1405-1423
    • /
    • 2021
  • 강우 현상은 물 순환과 에너지 순환의 주요 요소 중 하나이며 강우량 추정은 수자원 확보와 수재해 예측 및 피해 감축에 매우 중요한 역할을 한다. 위성 기반 강우량 추정은 시공간적으로 고해상도인 자료를 통하여 넓은 지역을 연속적으로 감시할 수 있다는 장점이 있다. 본 연구에서는 Himawari-8 Advanced Himawari Imager(AHI) 수증기 채널(6.7 ㎛), 적외 채널(10.8 ㎛)과 기상 레이더 Column Max (CMAX) 합성장을 이용하여 기계학습 기반 정량적 강우량 추정 모델을 개발하였다. 기계학습 기법으로는 랜덤 포레스트(Random Forest, RF)를 사용하였으며 기상 레이더 반사도(dBZ)와 Z-R식으로 변환한 강우강도(mm/hr)를 타겟으로 하는 모델을 구축하여 비교하였다. 레이더 강우강도를 통해 검증하였을 때 임계성공지수(Critical Success Index, CSI)는 0.34, Mean-Absolute-Error (MAE) 4.82 mm/hr였다. GeoKompsat-2(GK-2A) 강우강도 산출물, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-Cloud Classification System (CCS) 산출물과 비교하였을 때 강우 유무 분류에서 CSI 21.73%, 10.81%, 강우강도 정량적 평가에서 MAE 31.33%, 23.49% 높은 성능을 보였다. 강우량 산출물을 지도화 한 결과, 실제 강우강도 분포와 유사한 분포를 모의하여 기존 산출물 대비 높은 정확도의 강우량을 추정했다.

토양에 살포된 축산 분뇨로부터 암모니아 방출량 예측을 위한 인공신경망의 초매개변수 최적화와 데이터 증식 (Hyperparameter Optimization and Data Augmentation of Artificial Neural Networks for Prediction of Ammonia Emission Amount from Field-applied Manure)

  • 정평곤;임영일
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.123-141
    • /
    • 2023
  • 인공신경망을 이용한 모델 개발에서 데이터의 품질은 모델 성능에 큰 영향을 주고, 양질의 충분한 데이터가 인공신경망 훈련을 위해 필요하다. 하지만, 공학 분야에서는 적은 양의 데이터로 모델을 개발해야 하는 경우가 자주 발생한다. 본 논문은 토양에 살포된 축산 분뇨로부터 암모니아 방출량에 대한 적은 수의 데이터(83 개)를 사용하여 인공신경망 모델의 예측 성능을 향상할 수 있는 방안을 제시하였다. Michaelis-Menten 식으로 표현되는 암모니아 방출량 문제는 11개 입력변수에 대하여 2개 출력변수로 구성되었다. 출력변수는 최대 질소 발생량(Nmax, kg/ha)과 Nmax의 절반에 도달하는 시간(Km, h) 이다. 범주형 입력변수에 대해 다차원 등간격 기법인 one-hot encoding 을 이용하여 데이터 전처리를 수행하였고, 훈련데이터 66개에 대하여 generative adversarial network (GAN)을 이용하여 13개 데이터를 추가로 보강하였다. 또한, 인공신경망의 초매개변수인 은닉층 수, 각 은닉층 내 뉴런 수, 활성화 함수의 최적 조합을 찾기 위하여 Gaussian process (GP)를 사용하였다. 기존의 인공신경망 구조(Lim et al., 2007) 는 17개 평가데이터에 대하여 mean absolute error (MAE)는 Km에서 0.0668, Nmax에서 0.1860이었다. 본 연구에서 제시된 인공신경망 모델은 Km에서 0.0414, Nmax에서 0.0818로 MAE 가 기존 모델 대비 각각 38%, 56% 감소하였다. 본 연구에서 제시된 방법은 적은 양의 데이터를 갖는 문제에서 인공신경망 성능을 향상하기 위하여 활용할 수 있을 것이다.

Enhancing Medical Images by New Fuzzy Membership Function Median Based Noise Detection and Filtering Technique

  • Elaiyaraja, G.;Kumaratharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2197-2204
    • /
    • 2015
  • In recent years, medical image diagnosis has growing significant momentous in the medicinal field. Brain and lung image of patient are distorted with salt and pepper noise is caused by moving the head and chest during scanning process of patients. Reconstruction of these images is a most significant field of diagnostic evaluation and is produced clearly through techniques such as linear or non-linear filtering. However, restored images are produced with smaller amount of noise reduction in the presence of huge magnitude of salt and pepper noises. To eliminate the high density of salt and pepper noises from the reproduction of images, a new efficient fuzzy based median filtering algorithm with a moderate elapsed time is proposed in this paper. Reproduction image results show enhanced performance for the proposed algorithm over other available noise reduction filtering techniques in terms of peak signal -to -noise ratio (PSNR), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), image enhancement factor (IMF) and structural similarity (SSIM) value when tested on different medical images like magnetic resonance imaging (MRI) and computer tomography (CT) scan brain image and CT scan lung image. The introduced algorithm is switching filter that recognize the noise pixels and then corrects them by using median filter with fuzzy two-sided π- membership function for extracting the local information.

기계학습을 이용한 염화물 확산계수 예측모델 개발 (Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning)

  • 김현수
    • 한국공간구조학회논문집
    • /
    • 제23권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

라만 라이다를 이용한 대기 중 이산화탄소 혼합비 측정 (Ambient CO2 Measurement Using Raman Lidar)

  • 김대원;이한림;박준성;최원이;양지원;강형우
    • 대한원격탐사학회지
    • /
    • 제35권6_3호
    • /
    • pp.1187-1195
    • /
    • 2019
  • 우리는 처음으로 이산화탄소 지중 저장소에서 지표로 누출되는 이산화탄소를 원격으로 탐지 및 농도를 측정하는 라만 라이다 시스템을 개발하였다. 본 연구에서 개발한 라만 라이다의 송신단은 355 nm 파장에서 80 mJ의 에너지를 가진 레이저, 빔 익스펜더(Beam expender)로 구성되어 있으며 수신단은 망원경, 광학 수신기 및 검출기 등으로 구성된다. 실내 이산화탄소 셀 측정에서 라만 라이다의 이산화탄소 농도 측정 정확도는 99.89%였다. 또한, 우리는 라만 라이다의 이산화탄소 원거리 측정 능력을 평가하기 위해서 부경대학교에서 2019년 10월에 일주일간 야외 측정을 수행하였다. 이산화탄소 지점 측정 장비는 라만 라이다로 부터 300 m, 350 m 떨어진 곳에 위치하였다. 야외 측정 결과에서 라만 라이다로 측정된 이산화탄소 농도와 지점 측정 장비로 측정된 이산화탄소 농도와 좋은 상관관계를 보여준다. 라만 라이다와 지점 측정 장비로 측정된 이산화탄소 농도도 사이의 상관 계수(R), 평균 절대 오차(Mean Absolute Error; MAE), 평균 제곱근 오차(Root Mean Square Error; RMSE), 는 각각 0.67, 2.78 ppm, 3.26 ppm 이다.

기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정 (Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images)

  • 배세정;손보경;성태준;이연수;임정호;강유진
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1009-1029
    • /
    • 2023
  • 도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.

Prediction of unconfined compressive and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes using multiple linear regression and artificial neural network

  • Chore, H.S.;Magar, R.B.
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.225-240
    • /
    • 2017
  • This paper presents the application of multiple linear regression (MLR) and artificial neural network (ANN) techniques for developing the models to predict the unconfined compressive strength (UCS) and Brazilian tensile strength (BTS) of the fiber reinforced cement stabilized fly ash mixes. UCS and BTS is a highly nonlinear function of its constituents, thereby, making its modeling and prediction a difficult task. To establish relationship between the independent and dependent variables, a computational technique like ANN is employed which provides an efficient and easy approach to model the complex and nonlinear relationship. The data generated in the laboratory through systematic experimental programme for evaluating UCS and BTS of fiber reinforced cement fly ash mixes with respect to 7, 14 and 28 days' curing is used for development of the MLR and ANN model. The data used in the models is arranged in the format of four input parameters that cover the contents of cement and fibers along with maximum dry density (MDD) and optimum moisture contents (OMC), respectively and one dependent variable as unconfined compressive as well as Brazilian tensile strength. ANN models are trained and tested for various combinations of input and output data sets. Performance of networks is checked with the statistical error criteria of correlation coefficient (R), mean square error (MSE) and mean absolute error (MAE). It is observed that the ANN model predicts both, the unconfined compressive and Brazilian tensile, strength quite well in the form of R, RMSE and MAE. This study shows that as an alternative to classical modeling techniques, ANN approach can be used accurately for predicting the unconfined compressive strength and Brazilian tensile strength of fiber reinforced cement stabilized fly ash mixes.