유출예측량을 모의할 때 과거와 현재의 수문자료를 이용한다는 측면에서 미래 예측결과의 불확실성을 완전히 제거할 수는 없겠지만, 다양한 기법별 분석에 의하여 불확실성을 감소시킬 수 있다. 본 연구에서는 유출예측의 정확성 향상을 위해 다양한 유출예측 기법을 적용 및 평가하였으며 확률론적 예측을 가능하게 하는 예측기법인 ESP와 관측 시계열 자료를 이용한 통계기법으로 공주지점의 유출예측을 수행하였다. 각 기법에 따른 유출예측 결과의 신뢰성 평가는 MAE(Mean Absolute Error), RMSE(Root Mean Squared Error), RRMSE(Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC(Theil Inequality Coefficient)를 이용하였다. ESP 확률을 이용하여 예측한 유출결과와 통계적 시계열 분석에 의해 예측된 유출결과를 MAE, RMSE, RRMSE, MAPE, TIC를 이용하여 비교 분석하였으며 유출예측의 개선효과를 확인해본 결과, ESP 확률을 이용한 예측이 MAE(10.6), RMSE(15.14), RRMSE(0.244), MAPE(22.74%), TIC(0.13)으로 평가되었으며 MAE(23.2), RMSE(37.13), RRMSE(0.596), MAPE(26.69%), TIC(0.30)으로 평가된 ARMA와 MAE(26.4), RMSE(34.44), RRMSE(0.563), MAPE(47.38%), TIC(0.25)으로 평가된 Winters 에 비해 신뢰성이 높게 나타났다.
본 논문에서 기상 데이터를 사용하여 태양광 에너지를 예측하기 위해 기계학습 모델인 SVM(Support Vector Machine)과 ANN(Artificial Neural Network)의 성능을 비교한다. 장 단파 복사선 평균, 강수량, 온도 등 15가지 종류의 기상 데이터를 사용하여 두 모델을 생성하고, 실험을 통해 최적의 SVM의 RBF(Radial Basis Function) 파라미터와 ANN의 은닉층과 노드 개수, 정규화 파라미터를 도출하였다. SVM과 ANN 모델의 성능을 비교하기 위한 지표로서 MAPE(Mean Absolute Percentage Error)와 MAE(Mean Absolute Error)를 사용하였다. 실험 결과 SVM 모델은 MAPE=21.11, MAE=2281417.65의 성능을 달성하였고 ANN은 MAPE=19.54, MAE=2155345.10776의 성능을 달성하였다.
본 논문에서는 이웃 탐색점에서의 평균 절대치 오차 (mean absoulte error, MAE) 및 탐색여역 줄임을 이용한 고속 블록 정합 알고리듬 제안하였다. 이 알고리듬은 두 단계로 구성되어있다. 첫 번째 단계에서는 탐색영역을 3$\times$3 크기의 영역으로 겹치지 않게 나눈 뒤, 각 영역의 중심 탐색점에 대하여 블록 정합을 행하여 MAE를 구하고, 이들 중 가장 작은 MAE를 기준 MAE로 정한다. 그리고, 두 번째 단계에서는 각 영역의 중심 탐색점에서의 MAE를 이용하여 각 3$\times$3 영역의 나머지 탐색점에서의 MAE의 최소 범위를 구한 뒤, 최소 범위가 기준 MAE로 결정된 탐색점 근처에 존재할 가능성이 매우 큼을 이용하여 기준 MAE로 결정된 탐색점을 중심으로 탐색영역의 크기를 줄인 뒤, 블록 정합이 필요한 탐색점에 대하여서만 블록 정합을 행함으로써 고속으로 움직임을 추정하였다. 모의 실험을 통하여 본 제안한 방법이 우수한 움직임 추정 성능을 유지하면서도 많은 계산량의 감소를 얻을 수 있음을 확인하였다.
본 논문에서는 이웃 탐색점에서의 평균 절대치 오차(mean absolute error, MAE)를 이용하여 전역 탐색 알고리듬(full search algorithm, FSA)과 거의 같은 움직임 추정 성능을 얻으면서도 고속으로 움직임을 추정할 수 있는 2단계 고속 블록 정함 알고리듬을 제안하였다. 제안한 방법에서는 현재 탐색점에서 블록 정합을 통하여 얻을 수 있는 MAE의 최소 범위를 이웃 탐색점에서의 MAE를 이용하여 구한 뒤, 이를 이용하여 블록 정합이 필요한 탐색점에 대하여서만 블록 정합을 행하였다. 즉, 제안한 방법에서는 블록 정함이 필요한 탐색점 수를 줄임으로써 고속으로 움직임을 추정하였으며, 움직임 추정을 두 단계로 나누어 수행하였다 모의 설험을 통하여 제안한 방법이 FSA와 거의 같은 움직임 추정 성능을 유지하면서도 많은 계산량의 감소를 얻을 수 있음을 확인하였다
In this study, a chest deflection is predicted by introducing a deep learning technique with the results of the frontal impact of the USNCAP conducted for 110 car models from MY2018 to MY2020. The 120 data are divided into training data and test data, and the training data is divided into training data and validation data to determine the hyperparameters. In this process, the deceleration data of each vehicle is averaged in units of 10 ms from crash pulses measured up to 100 ms. The performance of the deep learning model is measured by the indices of the mean squared error and the mean absolute error on the test data. A DNN (Deep Neural Network) model can give different predictions for the same hyperparameter values at every run. Considering this, the mean and standard deviation of the MSE (Mean Squared Error) and the MAE (Mean Absolute Error) are calculated. In addition, the deep learning model performance according to the inclusion of CVW (Curb Vehicle Weight) is also reviewed.
태양광발전시스템은 태양광으로부터 에너지를 생산하는 발전기술이며, 신재생 에너지 기술 중 가장 빠르게 성장하고 있다. 태양광 발전 시스템은 부하에 안정적으로 에너지를 공급하는 것이 가장 중요시 된다. 그러나 날씨 및 기상 조건에 따라 에너지 생산이 불안정하기 때문에 에너지 생산량에 대한 정확한 예측이 필요하다. 본 논문에서는 강수량, 장 단파 복사선 평균, 온도 등 15가지 종류의 기상 데이터를 사용하여 태양광 에너지를 예측하는 인공 신경망(ANN)을 구현하고 성능을 평가한다. 인공 신경망은 은닉층을 구성하고 오버피팅을 방지하기 위한 페널티 ${\alpha}$와 같은 파라미터를 조절하여 구현한다. 예측모델의 정확도와 타당성을 검증하기 위해 성능지표로 MAPE(Mean Absolute Percentage Error)와 MAE(Mean Absolute Error)를 사용한다. 실험 결과 Hidden Layer $Sizes=^{\prime}16{\times}10^{\prime}$을 사용하였을 때 MAPE=19.54와 MAE=2155345.10776로 나타났다.
본 연구에서는 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망을 Internet of Things (IoT) 파워미터에 적용하여 단기 전력사용량 예측방법을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 성능평가 지표로써 Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Percentage Error (MPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)를 이용한다. 실험 결과는 GRU 기반의 모델이 LSTM 기반의 모델에 비해 MAPE 기준으로 4.52%, MPE 기준으로 5.59%만큼의 성능개선을 보였다.
본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.
Journal of the Korean Data and Information Science Society
/
제26권3호
/
pp.561-568
/
2015
이 연구에서는 공간회귀모형 중 공간시차모형과 공간오차모형을 이용하여 대구 경북 지역 단위면적당 아파트 매매가격을 예측하였다. k-최근접이웃 (k-nearest neighbours)을 이용하여 공간가중행렬을 구축하였으며, 이를 이용해 2012년 3월의 단위면적당 아파트 매매가격에 대한 모형을 적합시켰다. 적합시킨 공간시차모형, 공간오차모형을 이용하여 2013년 3월의 단위면적당 아파트 매매가격을 예측하였으며 RMSE (root mean squared error), RRMSE (root relative mean squared error), MAE (mean absolute error)를 통해 두 모형의 성능을 비교하였다.
본 연구에서는 발파 시 사람과 주변 환경에 영향을 끼치는 발파진동(peak particle velocity, PPV)을 예측하는 모델을 개발하였다. PPV를 예측하기 위해 kNN(k-nearest neighbors), CART(classification and regression tree), SVR(support vector regression), PSO(particle swarm optimization)-SVR 알고리즘을 이용한 4가지 머신러닝 모델을 개발하고 상호 비교하였다. 머신러닝 모델을 훈련하기 위해 경상남도 창원시에 있는 욕망산을 연구지역으로 선정하고 1048개의 발파 데이터를 획득하였다. 발파 데이터는 천공장, 저항선, 공간격, 최대지발장약량, 비장약량, 총공수, 에멀전비율, 이격거리, PPV로 구성되었다. 훈련된 모델들의 성능을 평가하기 위한 지표 값으로 MAE(mean absolute error), MSE(mean squared error), RMSE(root mean squared error)를 사용하였다. 평가결과 PSO-SVR 모델이 MAE, MSE, RMSE가 각각 0.0348, 0.0021, 0.0458으로 가장 우수한 예측 성능을 나타냈다. 마지막으로 개발된 머신러닝 모델을 이용하여 주변 환경에 영향을 끼치는 정도를 예측하는 방법을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.