• 제목/요약/키워드: MAE(mean absolute error)

검색결과 196건 처리시간 0.021초

추계학적 기법을 통한 공주지점 유출예측 연구 (Study of Stochastic Techniques for Runoff Forecasting Accuracy in Gongju basin)

  • 안정민;허영택;황만하;천근호
    • 대한토목학회논문집
    • /
    • 제31권1B호
    • /
    • pp.21-27
    • /
    • 2011
  • 유출예측량을 모의할 때 과거와 현재의 수문자료를 이용한다는 측면에서 미래 예측결과의 불확실성을 완전히 제거할 수는 없겠지만, 다양한 기법별 분석에 의하여 불확실성을 감소시킬 수 있다. 본 연구에서는 유출예측의 정확성 향상을 위해 다양한 유출예측 기법을 적용 및 평가하였으며 확률론적 예측을 가능하게 하는 예측기법인 ESP와 관측 시계열 자료를 이용한 통계기법으로 공주지점의 유출예측을 수행하였다. 각 기법에 따른 유출예측 결과의 신뢰성 평가는 MAE(Mean Absolute Error), RMSE(Root Mean Squared Error), RRMSE(Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC(Theil Inequality Coefficient)를 이용하였다. ESP 확률을 이용하여 예측한 유출결과와 통계적 시계열 분석에 의해 예측된 유출결과를 MAE, RMSE, RRMSE, MAPE, TIC를 이용하여 비교 분석하였으며 유출예측의 개선효과를 확인해본 결과, ESP 확률을 이용한 예측이 MAE(10.6), RMSE(15.14), RRMSE(0.244), MAPE(22.74%), TIC(0.13)으로 평가되었으며 MAE(23.2), RMSE(37.13), RRMSE(0.596), MAPE(26.69%), TIC(0.30)으로 평가된 ARMA와 MAE(26.4), RMSE(34.44), RRMSE(0.563), MAPE(47.38%), TIC(0.25)으로 평가된 Winters 에 비해 신뢰성이 높게 나타났다.

태양광 에너지 예측을 위한 SVM 및 ANN 모델의 성능 비교 (Performance comparison of SVM and ANN models for solar energy prediction)

  • 정원석;정영화;박문규;이창교;서정욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.626-628
    • /
    • 2018
  • 본 논문에서 기상 데이터를 사용하여 태양광 에너지를 예측하기 위해 기계학습 모델인 SVM(Support Vector Machine)과 ANN(Artificial Neural Network)의 성능을 비교한다. 장 단파 복사선 평균, 강수량, 온도 등 15가지 종류의 기상 데이터를 사용하여 두 모델을 생성하고, 실험을 통해 최적의 SVM의 RBF(Radial Basis Function) 파라미터와 ANN의 은닉층과 노드 개수, 정규화 파라미터를 도출하였다. SVM과 ANN 모델의 성능을 비교하기 위한 지표로서 MAPE(Mean Absolute Percentage Error)와 MAE(Mean Absolute Error)를 사용하였다. 실험 결과 SVM 모델은 MAPE=21.11, MAE=2281417.65의 성능을 달성하였고 ANN은 MAPE=19.54, MAE=2155345.10776의 성능을 달성하였다.

  • PDF

이웃 탐색점에서의 평균 절대치 오차 및 탐색영역 줄임을 이용한 고속 블록 정합 알고리듬 (A Fast Block Matching Algorithm Using Mean Absolute Error of Neighbor Search Point and Search Region Reduction)

  • 정원식;이법기;한찬호;권성근;장종국;이건일
    • 한국통신학회논문지
    • /
    • 제25권1B호
    • /
    • pp.128-140
    • /
    • 2000
  • 본 논문에서는 이웃 탐색점에서의 평균 절대치 오차 (mean absoulte error, MAE) 및 탐색여역 줄임을 이용한 고속 블록 정합 알고리듬 제안하였다. 이 알고리듬은 두 단계로 구성되어있다. 첫 번째 단계에서는 탐색영역을 3$\times$3 크기의 영역으로 겹치지 않게 나눈 뒤, 각 영역의 중심 탐색점에 대하여 블록 정합을 행하여 MAE를 구하고, 이들 중 가장 작은 MAE를 기준 MAE로 정한다. 그리고, 두 번째 단계에서는 각 영역의 중심 탐색점에서의 MAE를 이용하여 각 3$\times$3 영역의 나머지 탐색점에서의 MAE의 최소 범위를 구한 뒤, 최소 범위가 기준 MAE로 결정된 탐색점 근처에 존재할 가능성이 매우 큼을 이용하여 기준 MAE로 결정된 탐색점을 중심으로 탐색영역의 크기를 줄인 뒤, 블록 정합이 필요한 탐색점에 대하여서만 블록 정합을 행함으로써 고속으로 움직임을 추정하였다. 모의 실험을 통하여 본 제안한 방법이 우수한 움직임 추정 성능을 유지하면서도 많은 계산량의 감소를 얻을 수 있음을 확인하였다.

  • PDF

이웃 탐색점에서의 평균 절대치 오차를 이용한 2단계 고속 블록 정합 알고리듬 (A Two-Stage Fast Block Matching Algorithm Using Mean Absolute Error of Neighbor Search Point)

  • 정원식;이법기;권성근;한찬호;신용달;송규익;이건일
    • 대한전자공학회논문지SP
    • /
    • 제37권3호
    • /
    • pp.41-56
    • /
    • 2000
  • 본 논문에서는 이웃 탐색점에서의 평균 절대치 오차(mean absolute error, MAE)를 이용하여 전역 탐색 알고리듬(full search algorithm, FSA)과 거의 같은 움직임 추정 성능을 얻으면서도 고속으로 움직임을 추정할 수 있는 2단계 고속 블록 정함 알고리듬을 제안하였다. 제안한 방법에서는 현재 탐색점에서 블록 정합을 통하여 얻을 수 있는 MAE의 최소 범위를 이웃 탐색점에서의 MAE를 이용하여 구한 뒤, 이를 이용하여 블록 정합이 필요한 탐색점에 대하여서만 블록 정합을 행하였다. 즉, 제안한 방법에서는 블록 정함이 필요한 탐색점 수를 줄임으로써 고속으로 움직임을 추정하였으며, 움직임 추정을 두 단계로 나누어 수행하였다 모의 설험을 통하여 제안한 방법이 FSA와 거의 같은 움직임 추정 성능을 유지하면서도 많은 계산량의 감소를 얻을 수 있음을 확인하였다

  • PDF

정면충돌 시험결과와 딥러닝 모델을 이용한 흉부변형량의 예측 (Prediction of Chest Deflection Using Frontal Impact Test Results and Deep Learning Model)

  • 이권희;임재문
    • 자동차안전학회지
    • /
    • 제15권1호
    • /
    • pp.55-62
    • /
    • 2023
  • In this study, a chest deflection is predicted by introducing a deep learning technique with the results of the frontal impact of the USNCAP conducted for 110 car models from MY2018 to MY2020. The 120 data are divided into training data and test data, and the training data is divided into training data and validation data to determine the hyperparameters. In this process, the deceleration data of each vehicle is averaged in units of 10 ms from crash pulses measured up to 100 ms. The performance of the deep learning model is measured by the indices of the mean squared error and the mean absolute error on the test data. A DNN (Deep Neural Network) model can give different predictions for the same hyperparameter values at every run. Considering this, the mean and standard deviation of the MSE (Mean Squared Error) and the MAE (Mean Absolute Error) are calculated. In addition, the deep learning model performance according to the inclusion of CVW (Curb Vehicle Weight) is also reviewed.

태양광 에너지 예측을 위한 기상 데이터 기반의 인공 신경망 모델 구현 (Solar Energy Prediction Based on Artificial neural network Using Weather Data)

  • 정원석;정영화;박문규;서정욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.457-459
    • /
    • 2018
  • 태양광발전시스템은 태양광으로부터 에너지를 생산하는 발전기술이며, 신재생 에너지 기술 중 가장 빠르게 성장하고 있다. 태양광 발전 시스템은 부하에 안정적으로 에너지를 공급하는 것이 가장 중요시 된다. 그러나 날씨 및 기상 조건에 따라 에너지 생산이 불안정하기 때문에 에너지 생산량에 대한 정확한 예측이 필요하다. 본 논문에서는 강수량, 장 단파 복사선 평균, 온도 등 15가지 종류의 기상 데이터를 사용하여 태양광 에너지를 예측하는 인공 신경망(ANN)을 구현하고 성능을 평가한다. 인공 신경망은 은닉층을 구성하고 오버피팅을 방지하기 위한 페널티 ${\alpha}$와 같은 파라미터를 조절하여 구현한다. 예측모델의 정확도와 타당성을 검증하기 위해 성능지표로 MAPE(Mean Absolute Percentage Error)와 MAE(Mean Absolute Error)를 사용한다. 실험 결과 Hidden Layer $Sizes=^{\prime}16{\times}10^{\prime}$을 사용하였을 때 MAPE=19.54와 MAE=2155345.10776로 나타났다.

  • PDF

LSTM과 GRU 딥러닝 IoT 파워미터 기반의 단기 전력사용량 예측 (Short-term Power Consumption Forecasting Based on IoT Power Meter with LSTM and GRU Deep Learning)

  • 이선민;선영규;이지영;이동구;조은일;박대현;김용범;심이삭;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.79-85
    • /
    • 2019
  • 본 연구에서는 Long Short Term Memory (LSTM) 신경망과 Gated Recurrent Unit(GRU) 신경망을 Internet of Things (IoT) 파워미터에 적용하여 단기 전력사용량 예측방법을 제안하고, 실제 가정의 전력사용량 데이터를 토대로 예측 성능을 분석한다. 성능평가 지표로써 Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Percentage Error (MPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)를 이용한다. 실험 결과는 GRU 기반의 모델이 LSTM 기반의 모델에 비해 MAPE 기준으로 4.52%, MPE 기준으로 5.59%만큼의 성능개선을 보였다.

CNN 잡음감쇠기에서 필터 수의 최적화 (Optimization of the Number of Filter in CNN Noise Attenuator)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.625-632
    • /
    • 2021
  • 본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.

공간회귀모형을 이용한 대구경북 지역 단위면적당 아파트 매매가격 예측 (Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models)

  • 이우정;박철용
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권3호
    • /
    • pp.561-568
    • /
    • 2015
  • 이 연구에서는 공간회귀모형 중 공간시차모형과 공간오차모형을 이용하여 대구 경북 지역 단위면적당 아파트 매매가격을 예측하였다. k-최근접이웃 (k-nearest neighbours)을 이용하여 공간가중행렬을 구축하였으며, 이를 이용해 2012년 3월의 단위면적당 아파트 매매가격에 대한 모형을 적합시켰다. 적합시킨 공간시차모형, 공간오차모형을 이용하여 2013년 3월의 단위면적당 아파트 매매가격을 예측하였으며 RMSE (root mean squared error), RRMSE (root relative mean squared error), MAE (mean absolute error)를 통해 두 모형의 성능을 비교하였다.

머신러닝 모델을 이용한 석산 개발 발파진동 예측 (Prediction of Blast Vibration in Quarry Using Machine Learning Models)

  • 정다희;최요순
    • 터널과지하공간
    • /
    • 제31권6호
    • /
    • pp.508-519
    • /
    • 2021
  • 본 연구에서는 발파 시 사람과 주변 환경에 영향을 끼치는 발파진동(peak particle velocity, PPV)을 예측하는 모델을 개발하였다. PPV를 예측하기 위해 kNN(k-nearest neighbors), CART(classification and regression tree), SVR(support vector regression), PSO(particle swarm optimization)-SVR 알고리즘을 이용한 4가지 머신러닝 모델을 개발하고 상호 비교하였다. 머신러닝 모델을 훈련하기 위해 경상남도 창원시에 있는 욕망산을 연구지역으로 선정하고 1048개의 발파 데이터를 획득하였다. 발파 데이터는 천공장, 저항선, 공간격, 최대지발장약량, 비장약량, 총공수, 에멀전비율, 이격거리, PPV로 구성되었다. 훈련된 모델들의 성능을 평가하기 위한 지표 값으로 MAE(mean absolute error), MSE(mean squared error), RMSE(root mean squared error)를 사용하였다. 평가결과 PSO-SVR 모델이 MAE, MSE, RMSE가 각각 0.0348, 0.0021, 0.0458으로 가장 우수한 예측 성능을 나타냈다. 마지막으로 개발된 머신러닝 모델을 이용하여 주변 환경에 영향을 끼치는 정도를 예측하는 방법을 제시하였다.