There is a lot of information in our world, quick access to the most accurate information or finding the information we need is more difficult and complicated. The recommendation system has become important for users to quickly find the product according to user's preference. A social recommendation system using community detection based on label propagation is proposed. In this paper, we applied community detection based on label propagation and collaborative filtering in the movie recommendation system. We implement with MovieLens dataset, the users will be clustering to the community by using label propagation algorithm, Our proposed algorithm will be recommended movie with finding the most similar community to the new user according to the personal propensity of users. Mean Absolute Error (MAE) is used to shown efficient of our proposed method.
지속 가능한 에너지인 태양광 발전은 전 세계에서 널리 활용하는 재생 에너지 원천 중 하나로 최근 효율적인 태양광 발전 시스템 운영을 위해 태양광 발전량을 정확하게 예측하기 위한 연구가 활발히 진행되고 있다. 태양광 발전량 예측 모델을 구성하기 위해서는 기상 및 대기 환경을 넘어 태양의 위치에 따른 일사량의 정보가 필수적이나 태양의 실시간 위치 정보를 입력 변수로 활용한 연구가 부족한 실정이다. 그리하여 본 논문에서는 시간과 태양광 발전소 위치를 기반으로 태양의 고도와 방위각을 실시간으로 계산하여 입력 변수로 사용하는 방식을 제안한다. 이를 위해 AutoML 기반의 다양한 기계학습 모델을 구성하여 태양광 발전율을 예측하고 그 성능을 비교 분석하였다. 실험 결과, 태양 위치 정보를 포함한 경우에 환경 변수만을 고려하였을 때보다 예측 성능이 크게 향상되었음을 확인할 수 있었으며, Extra Trees 모델의 경우 태양 위치 정보를 추가하였을 때 MAE(Mean Absolute Error)가 33.90 에서 22.38 까지 낮아지는 결과를 확인하였다.
Korean Journal of Construction Engineering and Management
/
v.24
no.6
/
pp.81-90
/
2023
Climate change has resulted in increased frequency and intensity of heat waves, which poses a significant threat to the health and safety of construction workers, particularly those engaged in labor-intensive and heat-stress vulnerable working environments. To address this challenge, this study aimed to propose an interpretable machine learning approach for forecasting personal heat strain by considering the cumulative effect of heat exposure as a situational variable, which has not been taken into account in the existing approach. As a result, the proposed model, which incorporated the cumulative working time along with environmental and personal variables, was found to have superior forecast performance and explanatory power. Specifically, the proposed Multi-Layer Perceptron (MLP) model achieved a Mean Absolute Error (MAE) of 0.034 (℃) and an R-squared of 99.3% (0.933). Feature importance analysis revealed that the cumulative working time, as a situational variable, had the most significant impact on personal heat strain. These findings highlight the importance of systematic management of personal heat strain at construction sites by comprehensively considering the cumulative working time as a situational variable as well as environmental and personal variables. This study provided a valuable contribution to the construction industry by offering a reliable and accurate heat strain forecasting model, enhancing the health and safety of construction workers.
협업여과 추천기법에는 사용자 기반 협업여과와 아이템 기반 협업여과가 있으며, 절차는 유사도 측정, 이웃 선정, 예측값 생성 단계로 이루어진다. 유사도 측정 단계에는 유클리드 거리(Euclidean Distance), 코사인 유사도(Cosine Similarity), 피어슨 상관계수(Pearson Correlation Coefficient) 방법 등이 있고, 이웃 선정 단계에는 상관 한계치(Correlation-Threshold), 근접 N 이웃(Best-N-Neighbors) 방법 등이 있다. 마지막으로 예측값 생성 단계에는 단순평균(Simple Average), 가중합(Weighted Sum), 조정 가중합(Adjusted Weighted Sum) 등이 있다. 이처럼 협업여과 추천기법에는 다양한 기법들이 사용되고 있다. 따라서 본 논문에서는 사용자 기반 협업여과와 아이템 기반 협업여과 추천기법에 사용되는 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 알아보기 위해 성능 실험 및 비교 분석을 하였다. 실험은 GroupLens의 MovieLens 데이터 셋을 활용하였고 MAE(Mean Absolute Error)값을 이용하여 추천기법을 비교 하였다. 실험을 통해 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 찾을 수 있었고, 사용자 기반 협업여과와 아이템 기반 협업여과의 성능비교를 통해 아이템 기반 협업여과의 성능이 보다 우수했음을 확인 하였다.
Perceived age is defined as age estimated based on physical appearance. Perceived age is an important indicator of the overall health status of the elderly. This is because people who appear older tend to have higher rates of morbidity and mortality than people of the same chronological age. Although perceived age is an important indicator, there is a lack of objective methods to quantify perceived age. In this paper, we construct a quantified perceived age model from face images using a convolutional neural network. The face images are enlarged to super-resolution and the skin, an important feature in perceived age, is made clear. Moreover, through Tanh-polar transformation, the central area of the face occupies a relatively larger area than the boundary area, helping the neural network better recognize facial skin features. The experimental results show mean absolute error (MAE) of 6.59, showing that the proposed model is superior to existing method.
뇌 연령은 신경퇴행성 질환과 인지 저하를 예측하는 중요한 바이오마커로 주목받고 있으며, 이를 통해 개인의 뇌 건강 상태를 보다 정밀하게 확인할 수 있다. 특히, 회백질과 백질은 뇌 구조와 기능을 평가하는 데 핵심적인 역할을 하며, 뇌 구조적 변화를 분석함으로써 뇌 연령 예측의 정확도를 높일 수 있다. 또한, 특정 데이터셋만 활용될 경우 일반화된 성능을 기대하기 어려워 뇌 연령 예측에 다양한 데이터셋을 활용한 연구가 필요하다. 따라서, 본 연구에서는 다중 모달 MRI 데이터를 결합한 3D CNN 기반 뇌 연령 예측 모델을 제안한다. 제안된 모델은 회백질과 백질의 특징을 전처리된 T1 이미지에 결합하여 더욱 풍부한 뇌 구조 정보를 학습할 수 있도록 설계하여, 뇌 연령 예측의 정확성을 향상시켰다. 실험 결과 회백질과 백질 정보를 추가로 활용한 모델이 T1 이미지만을 사용한 기존 CNN 및 ResNet 모델보다 MAE(Mean Absolute Error) 평가지표에서 더 우수한 성능을 보였으며, 이를 통해 회백질과 백질 정보가 뇌 연령 예측에 중요한 기여를 한다는 사실을 확인하였다.
With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.
HanJoo Lee;Minkyu Jee;Hakdong Kim;Taeheul Jun;Cheongwon Kim
Journal of Broadcast Engineering
/
v.28
no.3
/
pp.285-292
/
2023
Recently, the impact of fine dust on health has become a major topic. Fine dust is dangerous because it can penetrate the body and affect the respiratory system, without being filtered out by the mucous membrane in the nose. Since fine dust is directly related to the industry, it is practically impossible to completely remove it. Therefore, if the concentration of fine dust can be predicted in advance, pre-emptive measures can be taken to minimize its impact on the human body. Fine dust can travel over 600km in a day, so it not only affects neighboring areas, but also distant regions. In this paper, wind direction and speed data and a time series prediction model were used to predict the concentration of fine dust in Seoul, and the correlation between the concentration of fine dust in Seoul and the concentration in each region was confirmed. In addition, predictions were made using the concentration of fine dust in each region and in Seoul. The lowest MAE (mean absolute error) in the prediction results was 12.13, which was about 15.17% better than the MAE of 14.3 presented in previous studies.
Won-Been Park;Heung-Bae Choi;Myeong-Soo Han;Ho-Sik Um;Yong-Sik Song
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.6
/
pp.536-542
/
2023
Satellites represent cutting-edge technology, of ering significant advantages in spatial and temporal observations. National agencies worldwide harness satellite data to respond to marine accidents and analyze ocean fluctuations effectively. However, challenges arise with high-resolution satellite-based sea surface temperature data (Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA), where gaps or empty areas may occur due to satellite instrumentation, geographical errors, and cloud cover. These issues can take several hours to rectify. This study addressed the issue of missing OSTIA data by employing LaMa, the latest deep learning-based algorithm. We evaluated its performance by comparing it to three existing image processing techniques. The results of this evaluation, using the coefficient of determination (R2) and mean absolute error (MAE) values, demonstrated the superior performance of the LaMa algorithm. It consistently achieved R2 values of 0.9 or higher and kept MAE values under 0.5 ℃ or less. This outperformed the traditional methods, including bilinear interpolation, bicubic interpolation, and DeepFill v1 techniques. We plan to evaluate the feasibility of integrating the LaMa technique into an operational satellite data provision system.
Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.