• 제목/요약/키워드: MADS proteins

검색결과 4건 처리시간 0.018초

Function of Multimeric MADS Protein Complexes in Floral Organ Development of Plant

  • Park, Ji-Im;Moon, Yong-Hwan
    • Journal of Photoscience
    • /
    • 제12권3호
    • /
    • pp.163-169
    • /
    • 2005
  • Recent reports suggest that floral organs such as sepals, petals, stamens, and carpels are specified by quaternary MADS protein complexes with different combinations. The formation of quaternary complexes of ABCDE MADS proteins may be the molecular basis of ABCDE model for the floral organ development. The MADS complexes involved in each floral organ development seem to be conserved in at least dicot species although detailed molecular mechanism is slightly different depending on species. Even in monocot, at least rice, MADS complexes similar to those in dicot exist, suggesting that the floral organ specification by MADS protein complexes may be conserved in most of plants. The MADS protein complexes may have more specific recognition of target genes or more transcription activation ability than monomers or dimers, resulting in finely regulated floral organ development.

  • PDF

Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris (Schauer) Rchb.f. (Orchidaceae)

  • Himani, Himani;Ramkumar, Thakku R.;Tyagi, Shivi;Sharma, Himanshu;Upadhyay, Santosh K.;Sembi, Jaspreet K.
    • Journal of Plant Biotechnology
    • /
    • 제46권4호
    • /
    • pp.255-273
    • /
    • 2019
  • Orchids are indispensable to the floriculture industry due to their unique floral organization. The flowers have two outer whorls of tepals including a lip (labellum), and two inner whorls, pollinia and gynostemiun (column). The floral organization and development is controlled at the molecular level, mainly by the MADS-box gene family, comprising homeotic genes divided into type I and type II groups. The type I group has four sub-groups, Mα, Mβ, Mγ, and Mδ, playing roles in seed, embryo, and female reproductive organ development; the type II group genes form classes A, B, C, D, and E, which are a part of the MIKCC subgroup with specific roles in florigenesis and organization. The coordinated functioning of these classes regulates the development of various floral whorls. The availability of genome and transcriptome sequence data for Phalaenopsis equestris offers an opportunity to validate the ABCDE model of flower development. Hence, this study sought to characterize the MADS-box gene family and elucidate of the ABCDE model. A total of 48 identified MADS-box proteins, including 20 type I [Mα (12), Mγ (8)] and 28 type II [MIKCC (27), MIKC*(1)] members, were characterized for physico-chemical features and domains and motifs organization. The exon-intron distribution and the upstream cis-regulatory elements in the promoter regions of MADS-box genes were also analysed. The discrete pace of duplication events in type I and type II genes suggested differential evolutionary constraints between groups. The correlation of spatio-temporal expression pattern with the presence of specific cis-regulatory elements and putative protein-protein interaction within the different classes of MADS-box gene family endorse the ABCDE model of floral development.

New role of LTR-retrotransposons for emergence and expansion of disease-resistance genes and high-copy gene families in plants

  • Kim, Seungill;Choi, Doil
    • BMB Reports
    • /
    • 제51권2호
    • /
    • pp.55-56
    • /
    • 2018
  • Long terminal repeat retrotransposons (LTR-Rs) are major elements creating new genome structure for expansion of plant genomes. However, in addition to the genome expansion, the role of LTR-Rs has been unexplored. In this study, we constructed new reference genome sequences of two pepper species (Capsicum baccatum and C. chinense), and updated the reference genome of C. annuum. We focused on the study for speciation of Capsicum spp. and its driving forces. We found that chromosomal translocation, unequal amplification of LTR-Rs, and recent gene duplications in the pepper genomes as major evolutionary forces for diversification of Capsicum spp. Specifically, our analyses revealed that the nucleotide-binding and leucine-rich-repeat proteins (NLRs) were massively created by LTR-R-driven retroduplication. These retoduplicated NLRs were abundant in higher plants, and most of them were lineage-specific. The retroduplication was a main process for creation of functional disease-resistance genes in Solanaceae plants. In addition, 4-10% of whole genes including highly amplified families such as MADS-box and cytochrome P450 emerged by the retroduplication in the plants. Our study provides new insight into creation of disease-resistance genes and high-copy number gene families by retroduplication in plants.

A WUSCHEL Homeobox Transcription Factor, OsWOX13, Enhances Drought Tolerance and Triggers Early Flowering in Rice

  • Minh-Thu, Pham-Thi;Kim, Joung Sug;Chae, Songhwa;Jun, Kyong Mi;Lee, Gang-Seob;Kim, Dong-Eun;Cheong, Jong-Joo;Song, Sang Ik;Nahm, Baek Hie;Kim, Yeon-Ki
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.781-798
    • /
    • 2018
  • Plants have evolved strategies to cope with drought stress by maximizing physiological capacity and adjusting developmental processes such as flowering time. The WOX13 orthologous group is the most conserved among the clade of WOX homeodomain-containing proteins and is found to function in both drought stress and flower development. In this study, we isolated and characterized OsWOX13 from rice. OsWOX13 was regulated spatially in vegetative organs but temporally in flowers and seeds. Overexpression of OsWOX13 (OsWOX13-ov) in rice under the rab21 promoter resulted in drought resistance and early flowering by 7-10 days. Screening of gene expression profiles in mature leaf and panicles of OsWOX13-ov showed a broad spectrum of effects on biological processes, such as abiotic and biotic stresses, exerting a cross-talk between responses. Protein binding microarray and electrophoretic mobility shift assay analyses supported ATTGATTG as the putative cis-element binding of OsWOX13. OsDREB1A and OsDREB1F, drought stress response transcription factors, contain ATTGATTG motif(s) in their promoters and are preferentially expressed in OsWOX13-ov. In addition, Heading date 3a and OsMADS14, regulators in the flowering pathway and development, were enhanced in OsWOX13-ov. These results suggest that OsWOX13 mediates the stress response and early flowering and, thus, may be a regulator of genes involved in drought escape.