• 제목/요약/키워드: MACCS2

검색결과 16건 처리시간 0.016초

Numerical studies on the important fission products for estimating the source term during a severe accident

  • Lee, Yoonhee;Cho, Yong Jin;Lim, Kukhee
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2690-2701
    • /
    • 2022
  • In this paper, we select important fission products for the estimation of the source term during a severe accident of a PWR. The selection is based on the numerical results obtained from depletion calculations for the typical PWR fuel via the in-house code named DEGETION (Depletion, Generation, and Transmutation of Isotopes on Nuclear Application), release fractions of the fission products derived from NUREG-1465, and effective dose conversion coefficients from ICRP 119. Then, for the selected fission products, we obtain the adjoint solutions of the Bateman equations for radioactive decay in order to determine the importance of precursors producing the aforementioned fission products via radioactive decay, which would provide insights into the assumption used in MACCS 2 for a level 3 PSA analysis in which up to six precursors are considered in the calculations of radioactive decays for the fission product after release from the reactor.

가압 경수로 및 가압중수로형 원자력 발전소의 중대사고 리스크 비교 평가 (A Comparison Study on Severe Accident Risks Between PWR and PHWR Plants)

  • 정종태;김태운;하재주
    • Journal of Radiation Protection and Research
    • /
    • 제29권3호
    • /
    • pp.187-196
    • /
    • 2004
  • 경수로형인 한국형 표준원전과 CANDU형 중수로형 원자력 발전소의 가상 중대사고시 대기 중으로 방출되는 방사성 물질로 인한 인체 건강영향에 미치는 리스크를 평가하고 비교하였다. 두 발전소 모두 반경 80km 까지의 인구분포와 2단계 PSA의 결과로 주어지는 방사선원 방출군별 방출 분율과 노심 재고량을 이용하였으며 평가 도구로는 MACCS2를 이용하였다. 인체에 미치는 영향은 조기 사망과 암 사망을 선정하였으며 반경 10 마일 밖으로 소개가 이루어진다고 가정하고 평가 결과는 사고 발생빈도를 고려한 리스크를 CCDF 곡선군으로 나타냈다. 평가 결과에 의하면 경수로형 원전에 비해 중수로형 원전이 리스크가 적게 나타나는데 이는 중수로형 원전이 경수로형 원전에 비해 가상 중대사고로 인해 대기 중으로 방출되는 방사성 물질의 양이 적기 때문이다. 두 발전소 모두 최대 리스크를 보이는 방사선원 방출군의 대표적인 초기사건은 증기발생기 세관파손 사고로 나타났다. 따라서, 경수로형 및 중수로형 발전소 모두 사고로 인한 주변 주민 보호를 위해서는 증기발생기 세관파손 사고의 발생빈도와 이로 인한 대기 중으로의 방사성 물질의 방출을 감소시키기 위한 방안이 강구되어야 한다.

Considerations of the Optimized Protective Action Distance to Meet the Korean Protective Action Guides Following Maximum Hypothesis Accidents of Major KAERI Nuclear Facilities

  • Goanyup Lee;Hyun Ki Kim
    • Journal of Radiation Protection and Research
    • /
    • 제48권1호
    • /
    • pp.52-57
    • /
    • 2023
  • Background: Korea Atomic Energy Research Institute (KAERI) operates several nuclear research facilities licensed by Nuclear Safety and Security Commission (NSSC). The emergency preparedness requirements, GSR Part 7, by International Atomic Energy Agency (IAEA) request protection strategy based on the hazard assessment that is not applied in Korea. Materials and Methods: In developing the protection strategy, it is important to consider an accident scenario and its consequence. KAERI has tried the hazard assessment based on a hypothesis accident scenario for the major nuclear facilities. During the assessment, the safety analysis report of the related facilities was reviewed, the simulation using MELCOR, MACCS2 code was implemented based on a considered accident scenario of each facility, and the international guidance was considered. Results and Discussion: The results of the optimized protective actions were 300 m evacuation and 800 m sheltering for the High-Flux Advanced Neutron Application Reactor (HANARO), the evacuation to radius 50 m, the sheltering 400 m for post-irradiation examination facility (PIEF), 100 m evacuation or sheltering for HANARO fuel fabrication plant (HFFP) facility. Conclusion: The results of the optimized protective actions and its distances for the KAERI facilities for the maximum postulated accidents were considered in establishing the emergency plan and procedures and implementing an emergency exercise for the KAERI facilities.

MELCOR 코드를 이용한 원자력발전소 중대사고 방사선원항 평가 방법 (An Approach to Estimation of Radiological Source Term for a Severe Nuclear Accident using MELCOR code)

  • 한석중;김태운;안광일
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.192-204
    • /
    • 2012
  • For a severe accident of nuclear power plant, an approach to estimation of the radiological source term using a severe accident code(MELCOR) has been proposed. Although the MELCOR code has a capability to estimate the radiological source term, it has been hardly utilized for the radiological consequence analysis mainly due to a lack of understanding on the relevant function employed in MELCOR and severe accident phenomena. In order to estimate the severe accident source term to be linked with the radiological consequence analysis, this study proposes 4-step procedure: (1) selection of plant condition leading to a severe accident(i.e., accident sequence), (2) analysis of the relevant severe accident code, (3) investigation of the code analysis results and post-processing, and (4) generation of radiological source term information for the consequence analysis. The feasibility study of the present approach to an early containment failure sequence caused by a fast station blackout(SBO) of a reference plant (OPR-1000), showed that while the MELCOR code has an integrated capability for severe accident and source term analysis, it has a large degree of uncertainty in quantifying the radiological source term. Key insights obtained from the present study were: (1) key parameters employed in a typical code for the consequence analysis(i.e., MACCS) could be generated by MELCOR code; (2) the MELOCR code simulation for an assessment of the selected accident sequence has a large degree of uncertainty in determining the accident scenario and severe accident phenomena; and (3) the generation of source term information for the consequence analysis relies on an expert opinion in both areas of severe accident analysis and consequence analysis. Nevertheless, the MELCOR code had a great advantage in estimating the radiological source term such as reflection of the current state of art in the area of severe accident and radiological source term.

Development of an Accident Consequence Assessment Code for Evaluating Site Suitability of Light- and Heavy-water Reactors Based on the Korean Technical Standards

  • Hwang, Won Tae;Jeong, Hae Sun;Jeong, Hyo Joon;Kil, A Reum;Kim, Eun Han;Han, Moon Hee
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.368-372
    • /
    • 2016
  • Background: Methodologies for a series of radiological consequence assessments show a distinctive difference according to the design principles of the original nuclear suppliers and their technical standards to be imposed. This is due to the uncertainties of the accidental source term, radionuclide behavior in the environment, and subsequent radiological dose. Both types of PWR and PHWR are operated in Korea. However, technical standards for evaluating atmospheric dispersion have been enacted based on the U.S. NRC's positions regardless of the reactor types. For this reason, it might cause a controversy between the licensor and licensee of a nuclear power plant. Materials and Methods: It was modelled under the framework of the NRC Regulatory Guide 1.145 for light-water reactors, reflecting the features of heavy-water reactors as specified in the Canadian National Standard and the modelling features in MACCS2, such as atmospheric diffusion coefficient, ground deposition, surface roughness, radioactive plume depletion, and exposure from ground deposition. Results and Discussion: An integrated accident consequence assessment code, ACCESS (Accident Consequence Assessment Code for Evaluating Site Suitability), was developed by taking into account the unique regulatory positions for reactor types under the framework of the current Korean technical standards. Field tracer experiments and hand calculations have been carried out for validation and verification of the models. Conclusion: The modelling approaches of ACCESS and its features are introduced, and its applicative results for a hypothetical accidental scenario are comprehensively discussed. In an applicative study, the predicted results by the light-water reactor assessment model were higher than those by other models in terms of total doses.

플룸분할 및 멀티스레딩을 통한 소외사고영향 분석시간 최적화 연구 (A Study on the Optimization of Offsite Consequence Analysis by Plume Segmentation and Multi-Threading)

  • 김승환;김성엽
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.166-173
    • /
    • 2022
  • A variety of input parameters are taken into consideration while performing a Level 3 PSA. Some parameters related to plume segments, spatial grids, and particle size distribution have flexible input formats. Fine modeling performed by splitting a number of segments or grids may enhance the accuracy of analysis but is time-consuming. Analysis speed is highly important because a considerably large number of calculations is required to handle Level 2 PSA scenarios for a single-unit or multi-unit Level 3 PSA. This study developed a sensitivity analysis supporting interface called MACCSsense to compare the results of the trials of plume segmentation with the results of the base case to determine its impact (in terms of time and accuracy) and to support the development of a modeling approach, which saves calculation time and improves accuracy. MACCSense is an automation tool that uses a large amount of plume segmentation analysis results obtained from MUST Converter and Mr. Manager developed by KAERI to generate a sensitivity report that includes impact (time and accuracy) by comparing them with the base-case result. In this study, various plume segmentation approaches were investigated, and both the accuracy and speed of offsite consequence analysis were evaluated using MACCS as a consequence analysis tool. A simultaneous evaluation revealed that execution time can be reduced using multi-threading. In addition, this study can serve as a framework for the development of a modeling strategy for plume segmentation in order to perform accurate and fast offsite consequence analyses.