• 제목/요약/키워드: MAC access delay

검색결과 247건 처리시간 0.031초

DOCSIS 3.0 기반의 다중 상향 채널 환경에서 새로운 대역 스케줄링 알고리즘 제안 (Novel Bandwidth Scheduling Algorithm for DOCSIS 3.0 Based Multiple Upstream Channels)

  • 정준영;안재민
    • 한국통신학회논문지
    • /
    • 제34권11B호
    • /
    • pp.1142-1150
    • /
    • 2009
  • 본 논문은 DOCSIS (Data Over Cable Service Interface Specifications) 3.0 기반의 다중 상향 채널 케이블 네트워크에서 효과적인 채널 자원 운용을 위한 새로운 대역 할당 알고리즘을 제안한다. 제안된 알고리즘은 상향 데이터 프레임의 평균 접근 지연 시간(Access Delay)을 줄이기 위해 피기백 대역 요청 기회를 통계적으로 향상시킨다. 이는 DOCSIS 3.0 규격에서 새롭게 규정된 다중 채널로 전송되는 세그먼트 프레임들의 피기백 대역 요청 특성을 이용한다. DOCSIS 3.0 규격에서는 하나의 대역 요청에 대해 다수개의 상향 채널로 대역이 분산되어 할당될 수 있다. 각각의 채널로 분산되어 할당된 대역은 전송 시 하나의 세그먼트 프레임으로 다루어진다. 제안된 알고리즘은 다중 채널로 전송되는 세그먼트 프레임의 배치를 최적화하여 피기백 대역 요청 확률을 높이고 접근 지연 시간을 최소화한다. 제안된 알고리즘의 성능 평가는 Self-similar 트래픽 모델을 적용하여 이론적 분석 및 모의시험을 통해 이루어진다.

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권9호
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

The Performance Analysis of Cognitive-based Overlay D2D Communication in 5G Networks

  • Abdullilah Alotaibi;Salman A. AlQahtani
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.178-188
    • /
    • 2024
  • In the near future, it is expected that there will be billions of connected devices using fifth generation (5G) network services. The recently available base stations (BSs) need to mitigate their loads without changing and at the least monetary cost. The available spectrum resources are limited and need to be exploited in an efficient way to meet the ever-increasing demand for services. Device to Device communication (D2D) technology will likely help satisfy the rapidly increasing capacity and also effectively offload traffic from the BS by distributing the transmission between D2D users from one side and the cellular users and the BS from the other side. In this paper, we propose to apply D2D overlay communication with cognitive radio capability in 5G networks to exploit unused spectrum resources taking into account the dynamic spectrum access. The performance metrics; throughput and delay are formulated and analyzed for CSMA-based medium access control (MAC) protocol that utilizes a common control channel for device users to negotiate the data channel and address the contention between those users. Device users can exploit the cognitive radio to access the data channels concurrently in the common interference area. Estimating the achievable throughput and delay in D2D communication in 5G networks is not exploited in previous studies using cognitive radio with CSMA-based MAC protocol to address the contention. From performance analysis, applying cognitive radio capability in D2D communication and allocating a common control channel for device users effectively improve the total aggregated network throughput by more than 60% compared to the individual D2D throughput without adding harmful interference to cellular network users. This approach can also reduce the delay.

Energy-efficient Low-delay TDMA Scheduling Algorithm for Industrial Wireless Mesh Networks

  • Zuo, Yun;Ling, Zhihao;Liu, Luming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권10호
    • /
    • pp.2509-2528
    • /
    • 2012
  • Time division multiple access (TDMA) is a widely used media access control (MAC) technique that can provide collision-free and reliable communications, save energy and bound the delay of packets. In TDMA, energy saving is usually achieved by switching the nodes' radio off when such nodes are not engaged. However, the frequent switching of the radio's state not only wastes energy, but also increases end-to-end delay. To achieve high energy efficiency and low delay, as well as to further minimize the number of time slots, a multi-objective TDMA scheduling problem for industrial wireless mesh networks is presented. A hybrid algorithm that combines genetic algorithm (GA) and simulated annealing (SA) algorithm is then proposed to solve the TDMA scheduling problem effectively. A number of critical techniques are also adopted to reduce energy consumption and to shorten end-to-end delay further. Simulation results with different kinds of networks demonstrate that the proposed algorithm outperforms traditional scheduling algorithms in terms of addressing the problems of energy consumption and end-to-end delay, thus satisfying the demands of industrial wireless mesh networks.

Performance Evaluation of a New Cooperative MAC Protocol with a Helper Node Selection Scheme in Ad Hoc Networks

  • Jang, Jaeshin
    • Journal of information and communication convergence engineering
    • /
    • 제12권4호
    • /
    • pp.199-207
    • /
    • 2014
  • A new cooperative MAC protocol called the busy tone cooperative medium access control (BT-COMAC) protocol is proposed to overcome the drawbacks and maximize the advantages of existing schemes. This scheme uses a new metric called decibel power to decide an appropriate helper node. Using received power strength is more efficient in selecting an appropriate helper node, especially in a densely populated network, than the effective transmission rates used in conventional schemes. All communication nodes in a communication service area are assumed to move independently. Two performance metrics are used: System throughput and channel access delay. A performance evaluation of the BT-COMAC protocol is conducted using a computer simulation over a slow fading wireless channel, and its performance results are compared with those of four existing schemes. The numerical results show that the BT-COMAC protocol improves the system throughput by approximately 15% as compared to the best existing scheme.

Adaptive Cross-Layer Packet Scheduling Method for Multimedia Services in Wireless Personal Area Networks

  • Kim Sung-Won;Kim Byung-Seo
    • Journal of Communications and Networks
    • /
    • 제8권3호
    • /
    • pp.297-305
    • /
    • 2006
  • High-rate wireless personal area network (HR-WPAN) has been standardized by the IEEE 802.15.3 task group (TG). To support multimedia services, the IEEE 802.15.3 TG adopts a time-slotted medium access control (MAC) protocol controlled by a central device. In the time division multiple access (TDMA)-based wireless packet networks, the packet scheduling algorithm plays a key role in quality of service (QoS) provisioning for multimedia services. In this paper, we propose an adaptive cross-layer packet scheduling method for the TDMA-based HR-WPAN. Physical channel conditions, MAC protocol, link layer status, random traffic arrival, and QoS requirement are taken into consideration by the proposed packet scheduling method. Performance evaluations are carried out through extensive simulations and significant performance enhancements are observed. Furthermore, the performance of the proposed scheme remains stable regardless of the variable system parameters such as the number of devices (DEVs) and delay bound.

Implementation of a MAC protocol in ATM-PON

  • Kim, Tea-Min;Shin, Gun-Soon
    • 한국정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.586-597
    • /
    • 2004
  • MAC (Medium Access Control) protocol is necessary for a OLT (Optical Line Termination) to allocate bandwidth to ONUs (Optical Network Units) dynamically in ATM PON (Passive Optical Network) operated in a kind of optical subscriber network having tree topology. The OLT collect information about ONUs and provide all permission with each ONU effectively by means of MAC protocol. Major functions of MAC protocol are composed of the algorism for distributing permission demanded by a ONU dynamically and allocation all permission used in APON properly. Sometimes MAC get to be a element of limiting the whole operation speed and occupy a most frequent operation part of the TC (Transmission Convergence) function module so it have to be designed to guarantee the best quality for each traffic. This paper introduce the way of implementation of a algorism which satisfy all of the upper renditions. This MAC algorism allocate bandwidth according to a number of working ONU and the information of the queue length dynamically and distribute permission for same interval to minimize delay variation of each ONU cell. MAC scheduler for the dynamic bandwidth allocation which is introduced in this paper has look-up table structure that makes programming possible. This structure is very suitable for implementation and operated in high speed because it require very simple and small chip size.

무선 매체 접근 제어 프로토콜 상에서의 음성/데이타 통합 시스템을 위한 뉴로 퍼지 제어기 설계 (Design of a NeuroFuzzy Controller for the Integrated System of Voice and Data Over Wireless Medium Access Control Protocol)

  • 최원석;김응주;김범수;임묘택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1990-1992
    • /
    • 2001
  • In this paper, a NeuroFuzzy controller (NFC) with enhanced packet reservation multiple access (PRMA) protocol for QoS-guaranteed multimedia communication systems is proposed. The enhanced PRMA protocol adopts mini-slot technique for reducing contention cost, and these minislot are futher partitioned into multiple MAC regions for access requests coming from users with their respective QoS (quality-of-service) requirements. And NFC is designed to properly determine the MAC regions and access probability for enhancing the PRMA efficiency under QoS constraint. It mainly contains voice traffic estimator including the slot information estimator with recurrent neural networks (RNNs) using real-time recurrent learning (RTRL), and fuzzy logic controller with Mandani- and Sugeno-type of fuzzy rules. Simulation results show that the enhanced PRMA protocol with NFC can guarantee QoS requirements for all traffic loads and further achieves higher system utilization and less non real-time packet delay, compared to previously studied PRMA, IPRMA, SIR, HAR, and F2RAC.

  • PDF

Ethernet PONs에서 서비스 클래스별 전송 우선순위를 적용한 DBA 스케쥴링 방식 및 성능 분석 (Service Class Priority Controlled DBA Scheduling Method and Performance Evaluation in Ethernet PONs)

  • 남윤석
    • 정보처리학회논문지C
    • /
    • 제12C권5호
    • /
    • pp.679-686
    • /
    • 2005
  • EPON 가입자 망은 매체를 공유하고, EPON 가입자의 5트래픽을 통합하여 전송하기 때문에 EPON 대역 할당에 대한 제어 방식이 중요하게 다루어지고 있으며, TDMA에 기반한 DBA 방식은 표준에 포함하지 않아서 다양한 알고리즘이 적용될 수 있다. 본 논문은 최선형 서비스와 지연 우선순위 큐 기반으로 높은 우선순위의 트래픽에 대하여 지연 QoS를 보장하는 DBA 방식에 관한 것으로, 제안된 DBA 방식은 전체 트래픽에 대하여 가상 스케줄링 방식을 사용하고 서비스 클래스의 우선순위에 따라 차례로 각 클래스의 트래픽에 적용하는 방식이며, 표준 규격에 명시된 MAC 메시지를 사용하며 DBA 기능 구성이 간단하면서도 각 클래스에 맞게 QoS를 보장할 수 있다. 모사시험을 통하여 폴링시간간격, 상향 및 하향 트래픽 부하 등에 따른 서비스 클래스 별 트래픽의 지연시간으로 성능을 평가하였으며, 가입자의 상향 트래픽 발생에 따른 실제 전달된 통합 트래픽의 양 등을 분석하였다. 제안된 방식과 같이 간단한 우선순위 적용으로도 지연 우선 순위가 높은 트래픽에 대하여 QoS 보장이 충분히 수행되는 것을 확인하였다.

Approximate Analysis of MAC Protocol with Multiple Self-tokens in a Slotted Ring

  • Sakuta, Makoto;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • 제5권3호
    • /
    • pp.249-257
    • /
    • 2003
  • Ring networks are very commonly exploited among local area and metropolitan area networks (LAN/MAN), whereas cells or small fixed-size packets are widely used in synchronized ring networks. In this paper, we present an analytical method for evaluating the delay-throughput performance of a MAC protocol with multiple self-tokens in a slotted ring network under uniform traffic. In our analysis, we introduce the stationary probability, which indicates the number of packets in a node. Also, it is assumed that each node has a sufficiently large amount of self-tokens, and a slotted ring has the symmetry. The analytical results with respect to delay-throughput performance have similar values to computer simulated ones. Furthermore, in order to achieve fair access under non-uniform traffic, we propose an adaptive MAC protocol, where the number of self-tokens in a node dynamically varies, based on the number of packets transmitted within a specified period. In the proposed protocol, when the number of packets transmitted by a node within a specified period is larger than a specified threshold, the node decreases the number of self-tokens in a per-node distributed method. That results in creating free slots in the ring, thus all nodes can obtain an equal opportunity to transmit into the ring. Performance results obtained by computer simulation show that our proposed protocol can maintain throughput fairness under non-uniform traffic.