• 제목/요약/키워드: MAC Forwarding

검색결과 26건 처리시간 0.019초

PDAODMRP: An Extended PoolODMRP Based on Passive Data Acknowledgement

  • Cai, Shaobin;Yang, Xiaozong;Wang, Ling
    • Journal of Communications and Networks
    • /
    • 제6권4호
    • /
    • pp.362-375
    • /
    • 2004
  • An ad hoc network is a multi-hop wireless network. Its limited bandwidth and frequently changing topology require that its protocol should be robust, simple, and energy conserving. We have proposed PoolODMRP to reduce its control overhead greatly by its one-hop local route maintenance. However, PoolODMRP still has some shortcomings. In this paper, we propose PDAODMRP (passive data acknowledgement ODMRP) to extend PoolODMRP. Compared with PoolODMRP, PDAODMRP has the following contributions: (1) It knows the status of its downstream forwarding nodes by route information collected from data packets instead of BEACON signal of MAC layer; (2) it max simplifies the route information collected from data packets by pool nodes; (3) it adopts a dynamic local route maintenance to enforce its local route maintenance; (4) it adopts the route evaluation policy of NSMP (neighbor supporting multicast protocol). Compared with PoolODMRP, PDAODMRP has lower control overhead, lower data delivery delay, and lower data overhead.

무선 센서 네트워크에서의 적응적 재전송 노드 선택에 의한 효율적인 Flooding 알고리즘 (An Efficient Flooding Algorithm with Adaptive Retransmission Node Selection for Wireless Sensor Networks)

  • 최승준;유상조
    • 한국통신학회논문지
    • /
    • 제32권11B호
    • /
    • pp.673-684
    • /
    • 2007
  • 본 논문에서는 무선 센서 네트워크에서 노드의 simple flooding에 의해 발생되는 broadcast storm problem을 해결하기 위한 크로스 레이어 기반의 효율적인 flooding 기법인 FARNS (Flooding algorithm with Adaptive Retransmission Nodes Selection)를 제안한다. FARNS는 MAC과 PHY에서 각각 이웃노들의 식별 정보와 수신신호강도 정보를 수집하여 패킷의 재전송에 사용될 재전송 후보 노드를 선택하여 모든 노드가 수신 패킷의 재전송을 시도하여 발생하는 불필요한 에너지의 낭비를 방지한다. 성능평가를 위한 모의 실험에서는 패킷의 수신비율과 전송비율, 평균중복패킷의 수와 오버헤드 등의 평가기준에서 FARNS가 다른 flooding 기법들보다 우수한 성능을 보인다. 또한, 재전송 동작에서 사용되는 노드들의 비율을 조절함으로써 다양한 네트워크 환경에서의 요구사항을 만족시키는 동시에 broadcast storm problem을 해결한다.

A Multi-Priority Service Differentiated and Adaptive Backoff Mechanism over IEEE 802.11 DCF for Wireless Mobile Networks

  • Zheng, Bo;Zhang, Hengyang;Zhuo, Kun;Wu, Huaxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3446-3464
    • /
    • 2017
  • Backoff mechanism serves as one of the key technologies in the MAC-layer of wireless mobile networks. The traditional Binary Exponential Backoff (BEB) mechanism in IEEE 802.11 Distributed Coordination Function (DCF) and other existing backoff mechanisms poses several performance issues. For instance, the Contention Window (CW) oscillations occur frequently; a low delay QoS guarantee cannot be provided for real-time transmission, and services with different priorities are not differentiated. For these problems, we present a novel Multi-Priority service differentiated and Adaptive Backoff (MPAB) algorithm over IEEE 802.11 DCF for wireless mobile networks in this paper. In this algorithm, the backoff stage is chosen adaptively according to the channel status and traffic priority, and the forwarding and receding transition probability between the adjacent backoff stages for different priority traffic can be controlled and adjusted for demands at any time. We further employ the 2-dimensional Markov chain model to analyze the algorithm, and derive the analytical expressions of the saturation throughput and average medium access delay. Both the accuracy of the expressions and the algorithm performance are verified through simulations. The results show that the performance of the MPAB algorithm can offer a higher throughput and lower delay than the BEB algorithm.

Intelligent Internal Stealthy Attack and its Countermeasure for Multicast Routing Protocol in MANET

  • Arthur, Menaka Pushpa;Kannan, Kathiravan
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1108-1119
    • /
    • 2015
  • Multicast communication of mobile ad hoc networks is vulnerable to internal attacks due to its routing structure and high scalability of its participants. Though existing intrusion detection systems (IDSs) act smartly to defend against attack strategies, adversaries also accordingly update their attacking plans intelligently so as to intervene in successful defending schemes. In our work, we present a novel indirect internal stealthy attack on a tree-based multicast routing protocol. Such an indirect stealthy attack intelligently makes neighbor nodes drop their routing-layer unicast control packets instead of processing or forwarding them. The adversary targets the collision avoidance mechanism of the Medium Access Control (MAC) protocol to indirectly affect the routing layer process. Simulation results show the success of this attacking strategy over the existing "stealthy attack in wireless ad hoc networks: detection and countermeasure (SADEC)" detection system. We design a cross-layer automata-based stealthy attack on multicast routing protocols (SAMRP) attacker detection system to identify and isolate the proposed attacker. NS-2 simulation and analytical results show the efficient performance, against an indirect internal stealthy attack, of SAMRP over the existing SADEC and BLM attacker detection systems.

A Novel Duty Cycle Based Cross Layer Model for Energy Efficient Routing in IWSN Based IoT Application

  • Singh, Ghanshyam;Joshi, Pallavi;Raghuvanshi, Ajay Singh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1849-1876
    • /
    • 2022
  • Wireless Sensor Network (WSN) is considered as an integral part of the Internet of Things (IoT) for collecting real-time data from the site having many applications in industry 4.0 and smart cities. The task of nodes is to sense the environment and send the relevant information over the internet. Though this task seems very straightforward but it is vulnerable to certain issues like energy consumption, delay, throughput, etc. To efficiently address these issues, this work develops a cross-layer model for the optimization between MAC and the Network layer of the OSI model for WSN. A high value of duty cycle for nodes is selected to control the delay and further enhances data transmission reliability. A node measurement prediction system based on the Kalman filter has been introduced, which uses the constraint based on covariance value to decide the scheduling scheme of the nodes. The concept of duty cycle for node scheduling is employed with a greedy data forwarding scheme. The proposed Duty Cycle-based Greedy Routing (DCGR) scheme aims to minimize the hop count, thereby mitigating the energy consumption rate. The proposed algorithm is tested using a real-world wastewater treatment dataset. The proposed method marks an 87.5% increase in the energy efficiency and reduction in the network latency by 61% when validated with other similar pre-existing schemes.

지능형 차량 전송시스템에서 긴급정보 전송을 위한 Vehicle-to-Vehicle 통신 프로토콜 (A Vehicle-to-Vehicle Communication Protocol Scheme for Forwarding Emergency Information in Intelligent Cars Transportation Systems)

  • 김경준;차병래;김철원
    • 한국ITS학회 논문지
    • /
    • 제6권2호
    • /
    • pp.70-80
    • /
    • 2007
  • 차량 간 통신 네트워크 환경에서 차량 간 혹은 차량 대 기지국 간 통신 시 다양한 통신에 방해가 되는 장애 요소가 발생하거나 존재할 수 있다. 다양한 장애 요인들로 인하여 차량의 고장이나 긴급상황이 발생할 경우 정보 전송과정에서 통신 네트워크의 포화상태나 과도한 경쟁으로 인한 패킷의 손실 및 지연이 발생하게 된다. 이러한 결과 인적, 물적 피해와 더불어 지속적인 통신시도로 차량의 전원고갈 문제가 발생할 수 있다. 따라서, 다양한 장애요인이 상존하는 도로 환경에서 종단간에 고속, 안정적일 뿐만 아니라 에너지 효율적인 프로토콜 개발이 요구된다. 본 논문에서는 IEEE 802.15.3 WPAN을 기반으로 차량간 통신 시스템에서 에너지 효율적인 긴급 메세지 전송을 위한 MAC 프로토콜을 제안한다. 시뮬레이션 및 분석을 통하여 본 논문에서 제안하는 방법이 패킷충돌 및 경쟁으로 발생하는 전송지연을 감소시켰으며, 에너지 효율적인 프로토콜임을 확인하였다.

  • PDF