• Title/Summary/Keyword: MAC(Multiple Access Control)

Search Result 150, Processing Time 0.029 seconds

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

Multi-channel QoS scheduling algorithm in IEEE 802.15.4e (IEEE 802.15.4e 멀티 채널 QoS 스케줄링 알고리즘)

  • Wu, Hyuk;Kim, Hak-Kyu;Lee, Dong-Jun;Kang, Ho-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.764-773
    • /
    • 2011
  • IEEE 802.15.4 is a standard for LWPAN based on TDMA. IEEE 802.15.4 has not been used widely because of restrictions on the QoS, scalability, and reliability. IEEE 802.15.4 utilizes GTS for one-hop QoS transmission. However GTS is not an effective method to satisfy QoS in multi-hop environments. Currently IEEE 802.15.4e, an extended version of IEEE 802.15.4 MAC sub-layer, is being developed to satisfy more diverse performance requirements than IEEE 802.15.4. IEEE 802.15.4e provides muti-hop QoS transmission functionality and uses multiple frequency channels. In this paper, a multi-channel TDMA scheduling scheme is proposed to satisfy end-to-end transmission delay in IEEE 802.15.4e. The performance of the proposed scheme is evaluated using simulation.

Dynamic Packet Transmission Probability Control Scheme in CDMA S_ALOHA Systems (CDMA S_ALOHA 시스템에서 동적 패킷 전송 확률 제어 기법)

  • 임인택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.485-492
    • /
    • 2003
  • This paper proposes a transmission probability control scheme for guaranteeing fair packet transmissions in CDMA slotted ALOHA system. In CDMA slotted ALOHA system, the packets transmitted in the same slot act as multiple access interference, so that unsuccessful packet transmissions are caused entirely by multiple access interference. Therefore, in order to maximize the system throughput, the number of simultaneously transmitted packets should be kept at a proper level. In the proposed scheme, the base station calculates the packet transmission probability of mobile stations in the next slot according to the offered load and then broadcasts this probability to all the mobile stations. Mobile stations, which have a packet to transmit, attempt to transmit packet with the received probability. Simulation results show that the proposed scheme can offer better system throughput and average delay than the conventional scheme, and guarantee a good fairness among all mobile stations regardless of the offered load.

Adaptive Random Access Algorithm for HIPERLAN/2 (HIPERLAN/2를 위한 적응적 랜덤 액세스 알고리즘)

  • Song Young-keum;Lee Jong-kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5B
    • /
    • pp.310-316
    • /
    • 2005
  • In this paper, we proposed and evaluated ARAH(Adaptive Random Access algorithm for HIPERLAN/2) to improve system performance. In this paper, HIPERLAN/2 uses OFDM(Orthogonal Frequency Division Multiplexing) modulation scheme to select appropriate PHY mode by Radio Channel Quality, Proposed the ARAH scheme uses these 7 PHY mode when mobile terminal determines the RCH(Random CHannel) number for random access. In this paper, these 7 PHY mode divided into two group, good and bad, and will be given high priority to mobile terminals which are in a good group. In the result of performance evaluation. ARAH algorithm, ARAH has a better performance of throughput and delay than existing algorithm.

MA : Multiple Acknowledgement Mechanism for UWSN (UnderWater Sensor Network)

  • Shin, Soo-Young;Lee, Seung-Joo;Park, Soo-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1769-1777
    • /
    • 2009
  • With the advent of the ubiquitous technology age, the progress of network technology has enabled a robust sensor communication, not just in cities, but also in poor surroundings such as deserts, polar regions, or underwater environments. In this paper, we propose a Multiple Acknowledgement (MA) technique to replace the conventional Automatic Repeat request (ARQ) technique. The MA mechanism is to send an Ack to many receivers simultaneously. The CH (master, coordinator) of the unit cluster broadcasts a Beacon frame where Ack information of the previously transmitted data is included. This technique can reduce the number of transmissions and overhead significantly. The proposed technique is a scheme improving the efficiency of an underwater sensor network where the uplink data transmission is the mainstream. The Performance of the ARQ, Block Ack, Pervasive Block Ack and the proposed method were compared with one another and analyzed. The proposed method showed significant performance improvement as compared with the ARQ, BA, and PBA in its channel efficiency.

  • PDF

Analysis of IEEE 802.11n System adapting SVD-MIMO Method based on Ns(Network simulator)-2 (Ns-2 기반의 SVD-MIMO 방식을 적용한 IEEE 802.11n 시스템 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Choi, Jin-Kyu;Kim, Kyung-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1109-1119
    • /
    • 2009
  • WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Though existing IEEE 802.11e demonstrates that data rates exceed 54Mbps with assuring QoS(Quality of Service), wireless internet users can't be satisfied with real communication system. After IEEE 802.11e system, Study trends of IEEE 802.11n show two aspects, enhanced system throughput using aggregation among packets in MAC (Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PHY connection. Therefore, this paper adapts MIMO in PHY layer for IEEE 802.11n system based on A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer considering MAC and PHY connection. SVD(Singular Value Decomposition) method with WLAN MIMO TGn Channel is used to analyze MIMO. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use Ns-2(Network Simulator-2) considering MAC and PHY connection for reality.

  • PDF

CRP-CMAC: A Priority-Differentiated Cooperative MAC Protocol with Contention Resolution for Multihop Wireless Networks

  • Li, Yayan;Liu, Kai;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2636-2656
    • /
    • 2013
  • To improve the cooperative efficiency of node cooperation and multiple access performance for multihop wireless networks, a priority-differentiated cooperative medium access control protocol with contention resolution (CRP-CMAC) is proposed. In the protocol, the helper selection process is divided into the priority differentiation phase and the contention resolution phase for the helpers with the same priority. A higher priority helper can choose an earlier minislot in the priority differentiation phase to send a busy tone. As a result, the protocol promptly selects all the highest priority helpers. The contention resolution phase of the same priority helpers consists of k round contention resolution procedures. The helpers that had sent the first busy tone and are now sending the longest busy tone can continue to the next round, and then the other helpers that sense the busy tone withdraw from the contention. Therefore, it can select the unique best helper from the highest priority helpers with high probability. A packet piggyback mechanism is also adopted to make the high data rate helper with packet to send transmit its data packets to its recipient without reservation. It can significantly decrease the reservation overhead and effectively improve the cooperation efficiency and channel utilization. Simulation results show that the maximum throughput of CRP-CMAC is 74%, 36.1% and 15% higher than those of the 802.11 DCF, CoopMACA and 2rcMAC protocols in a wireless local area network (WLAN) environment, and 82.6%, 37.6% and 46.3% higher in an ad hoc network environment, respectively.

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Enhancing the Reliability of Wi-Fi Network Using Evil Twin AP Detection Method Based on Machine Learning

  • Seo, Jeonghoon;Cho, Chaeho;Won, Yoojae
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.541-556
    • /
    • 2020
  • Wireless networks have become integral to society as they provide mobility and scalability advantages. However, their disadvantage is that they cannot control the media, which makes them vulnerable to various types of attacks. One example of such attacks is the evil twin access point (AP) attack, in which an authorized AP is impersonated by mimicking its service set identifier (SSID) and media access control (MAC) address. Evil twin APs are a major source of deception in wireless networks, facilitating message forgery and eavesdropping. Hence, it is necessary to detect them rapidly. To this end, numerous methods using clock skew have been proposed for evil twin AP detection. However, clock skew is difficult to calculate precisely because wireless networks are vulnerable to noise. This paper proposes an evil twin AP detection method that uses a multiple-feature-based machine learning classification algorithm. The features used in the proposed method are clock skew, channel, received signal strength, and duration. The results of experiments conducted indicate that the proposed method has an evil twin AP detection accuracy of 100% using the random forest algorithm.