• Title/Summary/Keyword: MAC(Medium Access Control)

Search Result 360, Processing Time 0.024 seconds

The Efficiency Design & MAC Function of the Composition Optical Network (광통신망 구축의 효과적인 설계 및 MAC고려 요소)

  • 하창국
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.4
    • /
    • pp.41-47
    • /
    • 2001
  • The paper describes SR3 (Synchronous Round Robin with Reservations), a collision-free medium access control protocol for all-optical slotted packet networks based on WDM multi-channel ring topologies where nodes are equipped with one fixed-wavelength receiver and one wavelength-tunable transmitter SR3 is derived from the SRR and MMR protocols previously proposed by the same authors for the same class of all-optical networks. SRR and MMR already achieve an efficient exploitation of the available bandwidth, while guaranteeing a throughput-fair access to each node. SR3, In addition, allows nodes to reserve slots. thereby achieving a stronger control on access delays; it is thus well suited to meet tight delay requirements, as it is the case for multimedia applications. Simulation results show that SR3 provides very good performance to guaranteed qualify traffic, but also brings signigicant performance improvements for best-effort traffic. Energy effciency is an important issue for optical network since they must rely on their batteries. We present a novel MAC protocol that achieves a good energy efficiency of optical interface of the network and provides support for diverse traffic types and QoS. The scheduler of the base station is responsible to provide the required QoS to connections on the optical link and to minimise the amount of energy spend by the High speed Network. The main principles of the MaC protocol are to avoid unsuccessful actions, minimise the number of transitions , and synchronise the mobile and the base-station. We will show that considerable amounts of energy can be saved using these principles.

  • PDF

QoS Aware Cross-layer MAC Protocol in wireless Sensor Networks (무선 센서 네트워크에서 QoS를 인지하는 Cross-layer MAC 프로토콜)

  • Park, Hyun-Joo;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2811-2817
    • /
    • 2010
  • In this paper we propose the QAC-MAC that supports Quality of Service(QoS) and saves energy resources of the sensor node, and hence prolonging the lifetime of the sensor network with multiple sink nodes. Generally, the nodes nearest to the sink node often experience heavy congestion since all data is forwarded toward the sink through those nodes. So this critically effects on the delay-constraint data traffics. QAC-MAC uses a hybrid mechanism that adapts scheduled scheme for medium access and scheduling and unscheduled scheme based on TDMA for no data collision transmission. Generally speaking, characteristics of the real-time traffic with higher priority tends to be bursty and has same destination. QAC-MAC adapts cross-layer concept to rearrange the data transmission order in each sensor node's queue, saves energy consumption by allowing few nodes in data transmission, and prolongs the network lifetime.

FPGA Implementation of a Grant Distribution Algorithm for the MAC in the ATM-PON (ATM-PON에서 MAC을 위한 승인분배 알고리즘의 FPGA 구현)

  • Kim, Tae-Min;Chung, Hae;Shin, Gun-Soon;Kim, Jin-Hee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.10
    • /
    • pp.1-9
    • /
    • 2001
  • The MAC (Medium Access Control) protocol is needed for the OLT(Optical Line Termination) to allocate bandwidth to ONUs(Optical Network Units) and ONTs(Optical Network Terminations) dynamically in the ATM PON(Passive Optical Network). With the protocol, the OLT gathers ONUs' informations and provides grants efficiently to each ONU. Two important functions of the MAC protocol is the grant request procedure and the grant distribution algrithm. The latter has the greatest arithmetic portion in the TC(Transmission Convergence) module, occupies a relatively large portion of the overall chip area, has often been the limiting factor in terms of speed, and should be designed to guarantee the quality of service for various traffics. In this paper, we implement the MAC with the FPGA which can allocate grants dynamically according to the queue length information and the number of active ONUs and distribute grants uniformly to minimize the cell delay variation for each ONU. The structure of the MAC scheduler for the dynamic bandwidth assignment has a programmable look-up table. Also, it has a simple structure, the less chip area, and the lower delay time.

  • PDF

무선 가시광 통신을 위한 MAC Protocol에 대한 연구

  • Sin, Hong-Seok;Choe, Jeong-Seok;Lee, Gyeong-U;Park, Seong-Beom;Jeong, Dae-Gwang;Lee, Yeong-Min;Park, Jin-U
    • Information and Communications Magazine
    • /
    • v.26 no.5
    • /
    • pp.30-35
    • /
    • 2009
  • 본고에서는 무선 가시광 통신을 위한 Medium Access Control (MAC) 프로토콜의 설계에 관해 기술한다. 조명등을 이용한 가시광 무선랜 네트워크는 고정된 상태의 Access Point (AP)에 의한 인프라를 Mobile Node (MN)를 상대로 구성하고 인터넷과 같은 기존의 인프라와 연결되는 구조적 특징을 가진다. 이러한 네트워크에 사용되는 무선 가시광 통신 채널의 특성을 이해하고 MAC프로토콜의 기능에 대한 요구조건을 도출하였다. 주어진 가시광 통신 채널을 효율적으로 사용할 수 있도록 시 분할다중 접속 방식과Full duplex를 도입하는 Frame 구조를 구성하였고 가시성을 이용한 접속 절차를 제안하였다.

Performance Enhancement of IEEE 802.15.3 MAC for Simultaneously Operating Piconets

  • Peng, Xue;Peng, Gong;Kim, Duk-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.34-43
    • /
    • 2007
  • In the IEEE 802.15.3 Medium Access Control (MAC) protocol, Simultaneously Operating Piconets (SOPs) are linked by the parent/child (P/C) or parent/neighbor (P/N) configuration, which work on a Time Division Multiple Access (TDMA) basis. This provides interference mitigation but the overall throughput is limited because the SOPs share the channel time exclusively. The protocol is not efficient for SOPs if we focus on the combination of interference mitigation and high throughput maintenance. In this paper Public Channel Time Allocation (Public CTA) is proposed, which is able to greatly reduce the inter-piconet interference (IPI) and achieve greater throughput without much loss of link success probability (LSP) in the SOPs. The simulation results based on the SOPs of Direct Sequence Ultra Wideband (DS-UWB) system demonstrate that the proposed scheme effectively supports the coexistence of SOPs, and it can not only significantly improve the overall throughput of SOPs but also maintain high LSP.

An Intelligent MAC Protocol Selection Method based on Machine Learning in Wireless Sensor Networks

  • Qiao, Mu;Zhao, Haitao;Huang, Shengchun;Zhou, Li;Wang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5425-5448
    • /
    • 2018
  • Wireless sensor network has been widely used in Internet of Things (IoT) applications to support large and dense networks. As sensor nodes are usually tiny and provided with limited hardware resources, the existing multiple access methods, which involve high computational complexity to preserve the protocol performance, is not available under such a scenario. In this paper, we propose an intelligent Medium Access Control (MAC) protocol selection scheme based on machine learning in wireless sensor networks. We jointly consider the impact of inherent behavior and external environments to deal with the application limitation problem of the single type MAC protocol. This scheme can benefit from the combination of the competitive protocols and non-competitive protocols, and help the network nodes to select the MAC protocol that best suits the current network condition. Extensive simulation results validate our work, and it also proven that the accuracy of the proposed MAC protocol selection strategy is higher than the existing work.

An Efficient Downlink MAC Protocol for Multi-User MIMO WLANs

  • Liu, Kui;Li, Changle;Guo, Chao;Chen, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4242-4263
    • /
    • 2017
  • Multi-User Multiple-Input Multiple-Output (MU-MIMO) technology has recently attracted significant attention from academia and industry because of it is increasingly important role in improving networks' capacity and data rate. Moreover, MU-MIMO systems for the Fifth Generation (5G) have already been researched. High Quality of Service (QoS) and efficient operations at the Medium Access Control (MAC) layer have become key requirements. In this paper, we propose a downlink MU-MIMO MAC protocol based on adaptive Channel State Information (CSI) feedback (called MMM-A) for Wireless Local Area Networks (WLANs). A modified CSMA/CA mechanism using new frame formats is adopted in the proposed protocol. Specifically, the CSI is exchanged between stations (STAs) in an adaptive way, and a packet selection strategy which can guarantee a fairer QoS for scenarios with differentiated traffic is also included in the MMM-A protocol. We then derive the expressions of the throughput and access delay, and analyze the performance of the protocol. It is easy to find that the MMM-A protocol outperforms the commonly used protocols in terms of the saturated throughput and access delay through simulation and analysis results.

Design of MAC Protocol to Guarantee QoS for Multimedia Traffic in a Slotted CDMA System (Slotted CDMA 환경에서 멀티미디어 트래픽의 QoS 보장을 위한 MAC 프로토콜)

  • 동정식;이형우;조충호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8B
    • /
    • pp.707-715
    • /
    • 2003
  • In this paper, we propose a new MAC(Medium Access Control) protocol using Movable-boundary, which tries to guarantee Qos for multimedia traffic in the slotted CDMA system. In this scheme, the traffic scheduler assigns channel resource according to the packet priority per service class and adapts the Movable-boundary concept in which the minimum resource is assigned to each traffic class; the remaining resource if it is available can be assigned dynamically according to the temporal demand of other traffic classes. For performance analysis, we performed computer simulations to obtain throughput and packet loss rate and compared the results with Fixed-boundary system. We observed that the error rate of voice traffic could be maintained below a prescribed value while bursty traffic such as video source shares the same channel. In comparison with Fixed-boundary scheme, our protocol exhibits better throughput and packet loss rate performance.

Reader Collision Avoidance Scheme for Mobile RFID-Sensor Integrated Networks

  • Ko, Doo-Hyun;Kim, Song-Min;Lee, Sang-Bin;An, Sun-Shin
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.108-117
    • /
    • 2009
  • In recent years, one of alternatives for constructing RFID networks that provide mobile services is using wireless sensor networks (WSN) to enhance network capacity, utility and scalability. Due to absence of compatible reader anti-collision control and channel capture phenomenon, the medium access control protocols as used in the RFID networks lead to reader collision and starvation problem. In this paper, we develop a MAC protocol which is called Enhanced Collision Avoidance MAC (ECO) to avoid reader to reader collisions in an integrated RFID network. ECO is a CSMA-based MAC protocol, and operates on integrated nodes which consist of a RFID reader and a mote. Performance evaluation shows superior results to pure-CSMA protocols under dense deployment environments, both in number of failures and in throughput.

  • PDF

CCDC: A Congestion Control Technique for Duty Cycling WSN MAC Protocols

  • Jang, Beakcheol;Yoon, Wonyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3809-3822
    • /
    • 2017
  • Wireless Sensor Networks hold the limelight because of significant potential for distributed sensing of large geographical areas. The radio duty cycling mechanism that turns off the radio periodically is necessary for the energy conservation, but it deteriorates the network congestion when the traffic load is high, which increases the packet loss and the delay too. Although many papers for WSNs have tried to mitigate network congestion, none of them has mentioned the congestion problem caused by the radio duty cycling of MAC protocols. In this paper, we present a simple and efficient congestion control technique that operates on the radio duty cycling MAC protocol. It detects the congestion by checking the current queue size. If it detects the congestion, it extends the network capacity by adding supplementary wakeup times. Simulation results show that our proposed scheme highly reduces the packet loss and the delay.