• 제목/요약/키워드: MAAP

검색결과 46건 처리시간 0.021초

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

격납건물종합누설률시험 주기연장을 위한 웹기반 소외결말분석 프로그램 개발 및 적용 (Development of Web-based Off-site Consequence Analysis Program and its Application for ILRT Extension)

  • 나장환;황석원;오지용
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.219-223
    • /
    • 2012
  • For an off-site consequence analysis at nuclear power plant, MELCOR Accident Consequence Code System(MACCS) II code is widely used as a software tool. In this study, the algorithm of web-based off-site consequence analysis program(OSCAP) using the MACCS II code was developed for an Integrated Leak Rate Test (ILRT) interval extension and Level 3 probabilistic safety assessment(PSA), and verification and validation(V&V) of the program was performed. The main input data for the MACCS II code are meteorological, population distribution and source term information. However, it requires lots of time and efforts to generate the main input data for an off-site consequence analysis using the MACCS II code. For example, the meteorological data are collected from each nuclear power site in real time, but the formats of the raw data collected are different from each site. To reduce the efforts and time for risk assessments, the web-based OSCAP has an automatic processing module which converts the format of the raw data collected from each site to the input data format of the MACCS II code. The program also provides an automatic function of converting the latest population data from Statistics Korea, the National Statistical Office, to the population distribution input data format of the MACCS II code. For the source term data, the program includes the release fraction of each source term category resulting from modular accident analysis program(MAAP) code analysis and the core inventory data from ORIGEN. These analysis results of each plant in Korea are stored in a database module of the web-based OSCAP, so the user can select the defaulted source term data of each plant without handling source term input data.

동적신뢰도 평가모델의 연구 (A Study on A Dynamic Reliability Analysis Model)

  • 제무성
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.239-246
    • /
    • 2000
  • 이 논문은 중대사고가 발생하였을때 운전원에 의하여 사고관리 방안을 수행하는 경우 그 실현성(Feasibility)을, 평가하는데 사용할 수 있는 새로운 시간의존적 신뢰도 분석방법을 제시하였다. 이 방법은 성능요구 (Performance Requirement)와 성능성취 (Performance Achievement)의 상관관계의 개념을 이용하는 신뢰도물리(Reliability Physics)와 모든 시간의존적 사고경위를 도출하는 동적사건수목 생성방법에 기초하고있다. 신뢰도물리는 성능요구변수와 성능성취변수의 비교를 이용한 신뢰도분석방법인 반면 동적사건수목 생성방법은 바람직한 해를 얻을 때까지 모든 가능한 사고경위를 도출해 내는 방법이다. 이 방법론을 정전사고시 참조원전의 공동에 비상화재시스템을 이용하여 물을 공급하는 공동범람사고관리 방안에 적용시켰다. Latin Hypercube Sampling 방법은 성능요구변수의 불확실성을 평가하는데 사용되었다. 제시된 방법론은 사고시 필요한 운전원의 방안수행 성공가능성을 평가하는데 사용될 수 있을 뿐만 아니라 궁극적으로 사고관리 절차서 개발에 도움이 될 수 있음을 보여주었다.

  • PDF

PREDICTION OF SEVERE ACCIDENT OCCURRENCE TIME USING SUPPORT VECTOR MACHINES

  • KIM, SEUNG GEUN;NO, YOUNG GYU;SEONG, POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.74-84
    • /
    • 2015
  • If a transient occurs in a nuclear power plant (NPP), operators will try to protect the NPP by estimating the kind of abnormality and mitigating it based on recommended procedures. Similarly, operators take actions based on severe accident management guidelines when there is the possibility of a severe accident occurrence in an NPP. In any such situation, information about the occurrence time of severe accident-related events can be very important to operators to set up severe accident management strategies. Therefore, support systems that can quickly provide this kind of information will be very useful when operators try to manage severe accidents. In this research, the occurrence times of several events that could happen during a severe accident were predicted using support vector machines with short time variations of plant status variables inputs. For the preliminary step, the break location and size of a loss of coolant accident (LOCA) were identified. Training and testing data sets were obtained using the MAAP5 code. The results show that the proposed algorithm can correctly classify the break location of the LOCA and can estimate the break size of the LOCA very accurately. In addition, the occurrence times of severe accident major events were predicted under various severe accident paths, with reasonable error. With these results, it is expected that it will be possible to apply the proposed algorithm to real NPPs because the algorithm uses only the early phase data after the reactor SCRAM, which can be obtained accurately for accident simulations.

3-Dimensional Analysis of the Steam-Hydrogen Behavior from a Small Break Loss of Coolant Accident in the APR1400 Containment

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong;Lee Unjang;Royl P.;Travis J. R.
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.24-35
    • /
    • 2004
  • In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management

수도권 지역의 탄소 성분 에어로졸 측정 연구: KORUS-AQ 2016 캠페인 기간을 중심으로 (A Study of Carbonaceous Aerosols Measurement in Metropolitan Area Performed during KORUS-AQ 2016 Campaign)

  • 정병주;배민석;안준영;이정훈
    • 한국대기환경학회지
    • /
    • 제33권3호
    • /
    • pp.205-216
    • /
    • 2017
  • Carbonaceous aerosols such as the equivalent black carbon (eBC), the elemental carbon (EC) and the organic carbon (OC) were monitored at the Seoul Olympic Park site ($37.521^{\circ}N$, $127.124^{\circ}E$) during the KORUS-AQ 2016 campaign using a Multi Angle Absorption Photometer (MAAP) and an OCEC Analyzer. Averaged mass concentrations of eBC, EC and OC were presented as $2.46{\pm}1.52{\mu}g/m^3$, $1.01{\pm}0.60{\mu}g/m^3$ and $4.85{\pm}2.60{\mu}g/m^3$, respectively. OC/EC ratio and mass absorption cross-section (MAC) of light absorbing aerosols were calculated as 2.32 and $14.8m^2/g$, respectively. Diesel OC concentrations were estimated from a source profile of diesel vehicles as well. eBC mass concentrations measured from May $26^{th}$ to May $27^{th}$, 2016 showed 40% higher than averaged eBC mass concentrations during campaign period. $PM_{2.5}$ concentrations measured in this period were also higher than average $PM_{2.5}$ concentrations. High eBC concentrations were observed from May $29^{th}$ to May $31^{st}$, 2016 and from June $9^{th}$ to June $11^{th}$, 2016, possibly due to morning rush hour and the effect of temperature inversion at night. Diurnal variations of eBC, EC and Diesel OC showed a typical pattern of metropolitan area. In the weekend, however, diurnal variations of eBC, EC and Diesel OC mass concentrations were different from those measured in the weekday. It is expected that this study can help to understand the relationship between carbonaceous aerosols in a metropolitan area.