• Title/Summary/Keyword: M3 Rotary

Search Result 168, Processing Time 0.022 seconds

Carbohydrase inhibition and anti-cancerous and free radical scavenging properties along with DNA and protein protection ability of methanolic root extracts of Rumex crispus

  • Shiwani, Supriya;Singh, Naresh Kumar;Wang, Myeong Hyeon
    • Nutrition Research and Practice
    • /
    • v.6 no.5
    • /
    • pp.389-395
    • /
    • 2012
  • The study elucidated carbohydrase inhibition, anti-cancerous, free radical scavenging properties and also investigated the DNA and protein protection abilities of methanolic root extract of Rumex crispus (RERC). For this purpose, pulverized roots of Rumex crispus was extracted in methanol (80% and absolute conc.) for 3 hrs for $60^{\circ}C$ and filtered and evaporated with vacuum rotary evaporator. RERC showed high phenolic content ($211{\mu}g$/GAE equivalent) and strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ($IC_{50}$ = 42.86 (absolute methanol) and $36.91{\mu}g/mL$ (80% methanolic extract)) and reduced power ability. Furthermore, RERC exhibited significant protective ability in $H_2O_2/Fe^{3+}$/ascorbic acid-induced protein or DNA damage and percentage inhibition of the HT-29 cell growth rate following 80% methanolic RERC exposure at $400{\mu}g/mL$ was observed to be highest ($10.2%{\pm}1.03$). Moreover, methanolic RERC inhibited ${\alpha}$-glucosidase and amylase effectively and significantly (P < 0.05). Conclusively, RERC could be considered as potent carbohydrase inhibitor, anti-cancerous and anti-oxidant.

The Walkable Street Design for 'Gaeksa-gil' of Jeonju City - Community Participatory Street Design - (전주시 객사길 보행자 중심 걷고 싶은 거리 설계 - 주민참여형 가로설계 -)

  • Kim Sung-Kyun;Jeong Tae-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.3 s.110
    • /
    • pp.94-104
    • /
    • 2005
  • This paper presents a streetscape design for the 'Gaeksa-gil', located in Gosa-dong and Jungang-dong, Jeonju City, which length is about 830m and width is about $8\sim10m$. The goals of the design are to make a street on which people want to walk and rest both safely and pleasantly. To achieve these goals; concepts of identity, history, placeness, commercial vitality, environmentally-friendliness, safety, amenity , and democracy have been developed. For the pedestrian safety; shared street concepts, such as crank, salalom, fort, mini-rotary etc. are adopted. For design method, community participatory design is adapted. For the design theme; the axes of Time and Space are developed and streets are divided into 3 thematic spaces, such as 'History Street,' 'Nature Street,' and 'Culture Street.' The History Street, which belongs to Time axis, is a space for experiencing past, present, and future history of Jeonju city. Nature Street, which belongs to Space axis, is a space for feeling and loaming the nature of the city. The Culture Street, which also belongs to Space axis, is a space for experiencing the culture of the city. The community participated in the whole design process through the workshop, the internet website, the street events, etc.

Paint Removal of Airplane & Water Jet Application

  • Xue, Sheng-Xiong;Chen, Zheng-Wen;Ren, Qi-Le;Su, Ji-Xin;Han, Cai-Hong;Pang, lei
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.125-129
    • /
    • 2014
  • The paint removal and recoating are the very important process in airplane maintenance. The traditional technology is to use the chemical way corroding the paint with paint remover. For changing the defects, corrosion & pollution & manual working, of the traditional technology, the physical process which removes the paint of airplane with 250MPa/250kW ultra-high pressure rotary water jetting though the surface cleaner installed on the six axes robot is studied. The paint layer of airplane is very thin and close. The contradiction of water jetting paint removal is to remove the paint layer wholly and not damage the surface of airplane. In order to solve the contradiction, the best working condition must be reached through tests. The paint removal efficiency with ultra-high pressure and move speed of not damaged to the surface. The move speed of this test is about 2m/min, and the paint removal efficiency is about $30{\sim}40m^2/h$, and the paint removal active area is 85-90%. No-repeat and no-omit are the base requests of the robot program. The physical paint removal technology will be applied in airplane maintenance, and will face the safety detection of application permission.

Application for Functional Construction Materials of Artificial Soil Manufactured Using Coal Bottom Ash (석탄 저회로 제조한 인공토양의 기능성 건설재 적용 가능성)

  • Kim, Kangduk;Lee, Yeongsaeng
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.300-306
    • /
    • 2014
  • To recycle coal bottom ash(denoted here as CBA) generated from thermal power plants as a functional construction material, artificial soil(denoted as AS) containing CBA with dredged soil(denoted as DS) at a ratio(wt%) of 70 : 30 was manufactured by means of material engineering with sintering in a rotary kiln at $1125^{\circ}C$ using a green body formed via extrusion processing. The properties of the soil mechanics of the AS and the as-received CBA were analyzed and compared. Compaction testing results determined an optimum moisture content of the AS and CBA at 18%. During these tests, the maximum dry unit weights of the materials were similar, at 1.57 and 1.58 $t/m^3$, respectively. The compressive strength levels of the AS and CBA concrete specimens were 5.1 and 5.4 $t/m^3$, respectively, both of which increased after materials engineering processing. In a consolidation test, the compression index of the AS and CBA was found to be $0.114{\pm}0.001$ in both cases. The values were similar regardless of the materials engineering processes, but during the consolidation of AS, its coefficient was higher than that of the CBA materials.

Accuracy Evaluation of Open-air Compost Volume Calculation Using Unmanned Aerial Vehicle (무인항공기를 이용한 야적퇴비 적재량 산정 정확도 평가)

  • Kim, Heung-Min;Bak, Su-Ho;Yoon, Hong-Joo;Jang, Seon-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.541-550
    • /
    • 2021
  • While open-air compost has value as a source of nutrients for crops in agricultural land, it acts as a pollution that adversely affects the environment during rainfall, and management is required. In this study, it was intended to analyze the accuracy of calculating open-air compost volume using fixed-wing UAV (unmanned aerial vehicle) capable of acquiring a wide range of images and automatic path flights and to identify the possibility of utilization. In order to evaluate the accuracy of calculating the three open-air compost volume, ground LiDAR surveys and precision surveys using a rotary UAV were performed. and compared with the open-air compost volume acquired through a fixed-wing UAV. As a result of comparing the calculation of open-air compost volume based on the ground LiDAR, the error rate of the rotary-wing was estimated to be ±5%, and the error rate of fixed-wing was -15 ~ -4%. one of three open-air compost volume calculated by fixed-wing was underestimated as about -15 %, but the deviation of the open-air compost volume was 2.9 m3, which was not significant. In addition, as a result of periodic monitoring of open-air compost using fixed-wing UAV, changes in the volume of open-air compost with time could be confirmed. These results suggested that efficient open-air compost monitoring and non-point pollutants in agricultural for a wide range using fixed-wing UAV is possible.

Studies on the yellow pigment produced by Monascus sp. CS-2 PartI. cultural conditions for yellow pigment produceduction. (Monascus sp.가 생산하는 황색 색소에 관한 연구 제1보 황색 색소 생산의 배양 조건)

  • Jang, Wook;Kim, Hyun-Soo;Son, Chung-Hong;Bae, Jong-Chan;Yoo, Ju-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.119-123
    • /
    • 1980
  • Culture conditions of yellow pigment in Monascus sp. were studied. According to the studies of culture conditions optimum condition was found to be pH 4.5, 3 days of incubation with 3% of sucrose as carbon source, 0.2 % of yeast extract as nitrogen source and 75m1 of medium in the 500m1 erlenmyer flask by rotary shaking (rpm 180) at 180 r.p.m. Effective levels of inorganic compounds were found to be 0.25 % of potassium phosphate monobasic and 0.1 % of Magnesium sulfate.

  • PDF

Analysis of Power Requirement for 105 HP Agricultural Tractor during Rotary Tillage Operation (로타리 작업 시 105마력급 농업용 트랙터의 소요동력 분석)

  • Kim, Wan-Soo;Choi, Chang-Hyun;Park, Seong-Un;Kim, Yong-Joo
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.8-8
    • /
    • 2017
  • 본 연구는 로타리 작업에 따른 105마력급 농업용 트랙터의 소요동력을 분석하기 위하여 수행되었다. 소요동력 측정 시스템은 차축 토크미터, PTO 토크미터, 주/보조 유압센서, 데이터 수집장치를 이용하여 구성하였다. 시험에 사용된 트랙터는 동양물산 105 HP급 트랙터 (S07, TYM, Korea)이며, 작업기는 로타베이터 (SW 230GL, Sungwoo Industrial Co. Ltd, Korea)를 사용하였다. 포장시험은 전라북도 부안군에 죽림길에 위치한 $4,000m^2$ ($100m{\times}40m$) 크기의 경작지 2곳에서 수행하였다. 포장시험 시 작업 단수는 주행단수 L3단 (2.38 km/h)에서 PTO 단수 1단 (540 rpm)과 2단 (750 rpm)으로 설정하였고, 로타리 작업 시 경심은 13 cm 조건에서 실시하였다. 트랙터 작업은 동양물산의 성능시험 업무를 맡고 있는 숙련된 작업자가 숙달된 방법으로 수행하였다. 포장시험지의 토양환경은 임의의 15곳에서 채취한 시료를 이용하여 토성, 함수율, 원추 관입지수에 대하여 미국 농무부 (USDA)법을 기준으로 분석하였다. 토양환경 분석 결과 토성은 Sandy loam (사양토), 평균 함수율은 35.15%, 평균 원추관입지수는 1,562 kPa로 나타났다. PTO 1단 작업 시 트랙터의 평균 소요동력은 차축, PTO, 주 유압, 보조 유압에 대하여 각각 1.8, 54.0, 1.3, 그리고 1.1 hp로 나타났다. PTO 2단 작업 시 트랙터의 평균 소요동력은 차축, PTO, 주 유압, 보조 유압에 대하여 각각 1.2, 79.4, 1.2, 그리고 1.0 hp로 나타났다. PTO 1단 작업 시 소요동력의 합은 58.2 hp로, 정격 마력 (105 hp) 대비 55.43 % 사용한 것으로 나타났으며, PTO 2단 작업 시 소요동력의 합은 82.8 hp로, 정격 마력 대비 78.85% 사용한 것으로 나타났다. PTO 1단 대비 2단에서는 PTO를 제외한 차축, 주 유압, 보조 유압의 소요동력이 감소하였으나, PTO에서 약 1.47배로 크게 증가하여 전체적으로 소요동력이 증가한 것으로 나타났다. 향후 다양한 작업기 및 작업 단수에 따른 소요동력을 분석하여 농업용 트랙터의 모든 부하 조건에 대한 데이터베이스 구축에 관한 연구를 수행할 예정이다.

  • PDF

Development of Low Temperature Thermal Desorption System and Remediation of Soil Contaminated with Petroleum Hydrocarbon (열순환식 저온열탈착 정화장치의 개발 및 유류오염 토양 현장 적용)

  • Kim, Guk-Jin;Lee, Sun-Hwa;Park, Kwang-Jin;Kim, Chi-Kyung;Lee, Cheol-Hyo;Kim, Do-Sun;Cho, Seok-Hee;Chang, Youn-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.62-68
    • /
    • 2008
  • The Low Temperature Thermal Desorption (LTTD) System equipped with a soil transfer unit, a rotary kiln, RTO, cyclones and a bag filter etc. was developed. The LTTD system was designed to be economically operated using LPG as a fuel and recirculating the discharged gas from the LTTD system through RTO. For the performance test of LTTD system the soil contaminated with light and heavy oils (2,690 mg TPH/kg soil) and with particle sizes below 50 mm was fed into the rotary kiln of LTTD system at 7$m^3$/hr with retention time of 15 minutes. Operation temperatures of LTTD system for the removal of soil TPH were $567^{\circ}C$ and $692^{\circ}C$. The residual TPH after treatment was 46 mg/kg and 32mg/kg respectively at each temperature condition, which shows high TPH removal efficiencies of the developed LTTD as 98.3% and 98.9%.

Shaping characteristics of two different motions nickel titanium file: a preliminary comparative study of surface profile and dentin chip (두 가지 다른 행정의 니켈 티타늄 파일의 성형 성상: 표면 성상, 상아질 삭편과 도말층에 대한 예비적 비교 연구)

  • Park, So-Ra;Park, Se-Hee;Cho, Kyung-Mo;Kim, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • Purpose: To assess the surface profile of dentinal wall, dentin chips and smear layer during the canal shaping with rotary (ProTaper) and ProFile and reciprocating (WaveOne) nickel-titanium file. Materials and Methods: Sixty human extracted mandibular premolars and incisors with single canals were randomly selected. Three experimental groups (n = 20) were instrumented with ProTaper (F2), ProFile (25/.06), WaveOne (25/.08) with irrigation of 2.5% NaOCl. The dentin chips were collected from flute of file during each canal preparation. After canal preparation, roots were grinded and each group was divided into two subgroups (n = 10) for surface profile and smear layer of dentinal wall of shaped root canal. Each specimen was observed under scanning electron microscope for evaluating size of dentin chips, root canal surface recessions and smear layer. Scores of Smear layer were statistically analyzed using Kruskal Wallis test and Mann Whitney test at P = 0.05 level. Results: The size of dentin chips from ProFile, ProTaper and WaveOne was up to $7{\mu}m$, $6.5{\mu}m$, and$4{\mu}m$, respectively. In the surface profile, the width of surface irregularity was measured and Profile, ProTaper and WaveOne was up to $150{\mu}m$, $70{\mu}m$, and $80{\mu}m$, respectively. Completely cleaned root canals were not found. In the middle and apical third of the canals, WaveOne group showed higher smear layer score than ProFile and ProTaper groups (P < 0.05). Conclusion: Within limits of this study, reciprocating motion WaveOne group was not significant difference of shaping ability with the full-sequence ProFile and ProTaper systems except canal clearness of middle and apical third of root canal. When using WaveOne to shaping root canal, thorough root canal irrigation is recommended.

Conceptual design and analysis of rotor for a 1-kW-Class HTS rotating machine

  • Kim, J.H.;Hyeon, C.J.;Quach, H.L.;Chae, Y.S.;Moon, J.H.;Boo, C.J.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • This paper presents a conceptual design and analysis for a 1-kW-class high-temperature superconducting rotating machine (HTSRM) rotor. The designed prototype is a small-scale integration system of a HTSRM and a HTS contactless rotary excitation device (CRED). Technically, CRED and HTSRM are connected in the same shaft, and it effectively charges the HTS coils of the rotor field winding by pumping fluxes via a non-contact method. HTS coils in rotor pole body and toroidal HTS wire in CRED rotor are cooled and operated by liquid nitrogen in cryogen tank located in inner-most of rotor. Therefore, it is crucial to securely maintain the thermal stability of cryogenic environment inside rotor. Especially, we critically consider not only on mechanical characteristics of the rotor but also on cryogenic thermal characteristics. In this paper, we conduct two main tasks covering optimizing a conceptual design and performing operational characteristics. First, rotor parameters are conceptually designed by analytical design codes. These parameters consider to mechanical and thermal performances such as mechanical strength, mechanical rigidity, and thermal heat losses of the rotor. Second, mechanical and thermal characteristics of rotor for 1-kW-class HTSRM are analyzed to verify the feasible operation conditions. Hence, three-dimensional finite element analysis (3D-FEA) method is used to perform these analyses in ANSYS-Workbench platform.