• Title/Summary/Keyword: M2M Model

Search Result 7,924, Processing Time 0.046 seconds

An Alternative Model for Determining the Optimal Fertilizer Level (수도(水稻) 적정시비량(適正施肥量) 결정(決定)에 대한 대체모형(代替模型))

  • Chang, Suk-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.1
    • /
    • pp.21-32
    • /
    • 1980
  • Linear models, with and without site variables, have been investigated in order to develop an alternative methodology for determining optimal fertilizer levels. The resultant models are : (1) Model I is an ordinary quadratic response function formed by combining the simple response function estimated at each site in block diagonal form, and has parameters [${\gamma}^{(1)}_{m{\ell}}$], for m=1, 2, ${\cdots}$, n sites and degrees of polynomial, ${\ell}$=0, 1, 2. (2) Mode II is a multiple regression model with a set of site variables (including an intercept) repeated for each fertilizer level and the linear and quadratic terms of the fertilizer variables arranged in block diagonal form as in Model I. The parameters are equal to [${\beta}_h\;{\gamma}^{(2)}_{m{\ell}}$] for h=0, 1, 2, ${\cdots}$, k site variable, m=1, 2, ${\cdots}$ and ${\ell}$=1, 2. (3) Model III is a classical response surface model, I. e., a common quadratic polynomial model for the fertilizer variables augmented with site variables and interactions between site variables and the linear fertilizer terms. The parameters are equal to [${\beta}_h\;{\gamma}_{\ell}\;{\theta}_h$], for h=0, 1, ${\cdots}$, k, ${\ell}$=1, 2, and h'=1, 2, ${\cdots}$, k. (4) Model IV has the same basic structure as Mode I, but estimation procedure involves two stages. In stage 1, yields for each fertilizer level are regressed on the site variables and the resulting predicted yields for each site are then regressed on the fertilizer variables in stage 2. Each model has been evaluated under the assumption that Model III is the postulated true response function. Under this assumption, Models I, II and IV give biased estimators of the linear fertilizer response parameter which depend on the interaction between site variables and applied fertilizer variables. When the interaction is significant, Model III is the most efficient for calculation of optimal fertilizer level. It has been found that Model IV is always more efficient than Models I and II, with efficiency depending on the magnitude of ${\lambda}m$, the mth diagonal element of X (X' X)' X' where X is the site variable matrix. When the site variable by linear fertilizer interaction parameters are zero or when the estimated interactions are not important, it is demonstrated that Model IV can be a reasonable alternative model for calculation of optimal fertilizer level. The efficiencies of the models are compared us ing data from 256 fertilizer trials on rice conducted in Korea. Although Model III is usually preferred, the empirical results from the data analysis support the feasibility of using Model IV in practice when the estimated interaction term between measured soil organic matter and applied nitrogen is not important.

  • PDF

Modeling on the Prediction of Flow Rate and Groundwater Level Drawdown Associated with Tunnel Excation in Fractured rock (단열암반내 터널 굴착에 따른 지하수유출 및 주변지역의 지하수위 하강예측 모델링)

  • Lee Byeong-Dae;Sung Ig-Hwan;Jeong Chan-Ho;Kim Yong-Je
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.289-301
    • /
    • 2005
  • Groundwater level drawdown of the first stage resulted from groundwater leakage into tunnel was predicted by an analytical approximation. And numerical modeling was performed to predict the flow rates into tunnel and the groundwater level decline in the vicinity of future proposed tunnel area using a groundwater flow model MODFLOW. Groundwater level of the first stage was predicted to decrease by 15.3 m in analytical approximation. The flow rates in the total length of the future tunnel, when it is excavated, would be approximately $1,870m^3/day$ in numerical model. The model predicts that the groundwater levels in the area around the future tunnel are expected to drop between 5 to 25 m relative to current groundwater levels. Under condition for a $50\%$ tunnel conductance increase, the flow rate was estimated to be $2,518m^3/day$ and the groundwater level drawdown was predicted to be between 5 to 35 m The flow rate and the predicted groundwater level drawdown under a $2,518m^3/day$ tunnel conductance decrease was estimated to be $1,273m^3/day$ and between 2 to 12 m.

Optimal Parameters Estimation of Diffusion-Analogy Geomorphologic Instantaneous Unit Hydrograph Model (확산-유추 지형학적 순간단위도 모형의 최적매개변수 추정)

  • Kim, Joo-Cheol;Choi, Yong-Joon
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.385-394
    • /
    • 2011
  • In this study, optimal parameters of diffusion-analogy GIUH were calculated by separating channel and hillslope from drainage structures in the basin. Parameters of the model were composed of channel and hillslope, each velocity($u_c$, $u_h$) and diffusion coefficient($D_c$, $D_h$). Tanbu subwatershed in Bocheong river basin as a target basin was classified as 4th rivers by Strahler's ordering scheme. The optimization technique was applied to the SCE-UA, the estimated optimal parameters are as follows. $u_c$ : 0.589 m/s, $u_h$ : 0.021 m/s, $D_c$ : $34.469m^2/s$, $D_h$ : $0.1333m^2/s$. As a verification for the estimated parameters, the error of average peak flow was about 11 % and the error of peaktime was 0.3 hr. By examining the variability of parameters, the channel diffusion coefficient didn't have significant effect on hydrological response function. by considering these results, the model is expected to be simplified in the future.

Behavior of the tunnel under the influence of a existing building during the adjacent ground excavation (근접굴착 시 기존건물의 영향을 받는 터널의 거동)

  • Lee, Jong-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.609-623
    • /
    • 2018
  • If the ground is excavated in a depth which is deeper than the adjacent existing tunnel, the behavior of the braced wall is known to be greatly affected by the presence of the tunnel. By the way it is expected to be also affected by the structure on the ground surface, There are not many examples of studies which are conducted on this subject. As a result, largel scale model tests and analysis were conducted, to measure the behavior of the tunnel under the building whose location on the ground surface was varied during the adjacent ground excavation. For this purpose, the location of a building load was varied in 0 m, 1D, 2D on ground surface. In this paper, the behaviors of braced wall and adjacent tunnel was studied. Model tests in 1 : 10 scale were performed in real construction sequences. The size of test pit was $2.0m(width){\times}6.0m(height){\times}4.0m(length)$ in dimension. As a result, it was found that the stability of the existing tunnel under the influence of the building load on the ground surface adjacent to the braced wall.

Design of MMIC Variable Gain LNA Using Behavioral Model for Wireless LAM Applications (거동모델을 이용한 무선랜용 MMIC 가변이득 저잡음 증폭기 설계)

  • Park, Hun;Yoon, Kyung-Sik;Hwang, In-Gab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.697-704
    • /
    • 2004
  • This paper describes the design and fabrication of an MMIC variable gain LNA for 5GHz wireless LAN applications, using 0.5${\mu}{\textrm}{m}$ gate length GaAs MESFET transistors. The advantages of high gain and low noise performance of E-MESFETS and excellent linear performance of D-MESFETS are combined as a cascode topology in this design. Behavioral model equations are derived from the MESFET nonlinear current voltage characteristics by using Turlington's asymptote method in a cascode configuration. Using the behavioral model equations, a 4${\times}$50${\mu}{\textrm}{m}$ E-MESFET as a common source amplifier and a 2${\times}$50${\mu}{\textrm}{m}$ D-MESFET as a common gate amplifier are determined for the cascode amplifier. The fabricated variable gain LNA shows a noise figure of 2.4dB, variable gain range of more than 17dB, IIP3 of -4.8dBm at 4.9GHz, and power consumption of 12.8mW.

Computation of Complete Bouguer Anomalies in East Sea (동해 지역의 완전부우게 이상 계산)

  • Kim, Young-Hyun;Yun, Hong-Sik;Lee, Dong-Ha;Huang, He
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.165-168
    • /
    • 2010
  • This paper describes the results of complete Bouguer anomalies computed from the Free-air anomalies that derived from Sandwell and DNSC08 mairne gravity models. Complete bouguer corrections consist of three parts: the bouguer correction (Bullard A), the curvature correction (Bullard B) and the terrain correction (Bullard C). These all corrections have been computed over the East Sea on a $1'{\times}1'$ elevation data (topography and bathymetry) derived from ETOPO1 global relief model. In addition, a constant topographic (sea-water) density of $2,670kg/m^3$ ($1,030kg/m^3$) has been used for all correction terms. The distribution of complete bouguer anomalies computed from DNSC08 are -34.390 ~ 267.925 mGal, and those from Sandwell are -32.446 ~ 266.967 mGal in East Sea. The mean and RMSE value of the difference between DNSC08 and Sandwell is $0.036{\pm}2.373$ mGal. The highest value of complete bouguer anomaly are found around the region of $42{\sim}43^{\circ}N$ and $137{\sim}139^{\circ}E$ (has the lowest bathymetry) in both models. Theses values show that the gravity distribution of both models, DNSC08 and Sandwell, are very similar. They indicate that satellite-based marine gravity model can be effectively used to analyze the geophysical, geological and geodetic characteristics in East Sea.

  • PDF

Assessment of Possibility for Unaccessible Areas Positioning Using Ortho Imagery (정사영상을 이용한 비접근지역의 위치결정 가능성 평가)

  • Kang Joon-Mook;Lee Yong-Woong;Jo Hyeon-Wook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.287-291
    • /
    • 2006
  • Currently application of high-resolution satellite imagery is expanding with development of high tech optical and space aviation technology. Although using 3 dimensional modeling technology in order to attain accurate terrain information using existing ground control points is the most dependable reference data, such means are unapplicable for certain area because of it's limited access. In this study, we have researched into ways to utilizing high resolution satellite images from IKONOS and Quickbird, and sub-meter class satellites images that will be utilized In the future such as Arirang images and PLEIADES images for unaccessible areas. For that purpose we have created accuracy verification and GCP files for existing ortho-imagery and digital elevation model. The results showed that accuracy of ortho-Imagery and digital elevation model was RMSE X:3.043m, Y:2.921m, Z:6.139m. Also, after ortho-rectifying IKONOS images using ground control points extracted from ortho imagery and digital elevation model the accuracy of the imagery was RMSE X:3.243m, Y:2.067m, Z:1.872m.

  • PDF

Numerical Simulations of Water Quality in ManKyong River (QUAL-II E 모델에 의(依)한 만경강(萬頃江)의 수질예측(水質豫測))

  • Shim, Jae-Hwan;Choi, Moon-Sul
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.1
    • /
    • pp.67-75
    • /
    • 1991
  • The QUAL-II E Model was applied to predict the water quality of the Mankyong drainage System, and lead to following conclusion. 1. The difference between computed and measured BOD at the M-3 (Bakgugeong) station was within 10%, indicating that the application of the QUAL-IIE Model for the prediction of water quality was satisfactory thus far. 2. The application of the model states that the discharge of concentrated pollutants at the M-1 station on the Jeonju stream, located 41Km upstream from the estuary, causes the worst problems. The sluice which extends residence time and enlarges watery surface improves water quality by a Self-purification process at the M-3 station, 28km upstream from the estuary. 3. The accuracy of the model diminished when this model was applied on the estuary downstream of the sluice. Hence, the application of the model on the estuary needs to be used with caution. 4. Among the conputed water quality parameters, BOD is the worst problem. At the M-3 station, BOD is computed to be 26.6 mg/1 in 1996, 30.7 mg/1 in 2,001, 33.0 mg/l in 2006, and 37.5 mg/1 in 2011. When preventive measures against water pollution are not properly exercised, severe problems in irrigation and water resources are expected. This study will be of used in the selection of irrigation water intake points, the criteria of effluent treatment, the management of water resources, and the establishment of water quality managemont policy.

  • PDF

Runoff Analysis using ModClark Model (ModClark 모형을 이용한 유출 해석)

  • Ahn, Sang-Jin;Yoon, Seok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.245-257
    • /
    • 2005
  • The purpose of the present study is examining the changes of runoff characteristics and extracting hydrologic parameters by applying ModClark model on grid divided watershed. Bocheong stream basin in Geum River system, one of the representative watersheds of IHP projects, is selected. Hydrology-based topographical informations are calculated using GIS data in the HEC-GeoHMS V1.1 extension in Arcview 3.2. The ModClark model requires precipitation data in a gridded format. The gridded data must be recorded in the HEC Data Storage System file format. Therefore, kriging method was used to interpolate the point values to create a grid that gives each cell over the entire watershed a precipitation value. Hec-DSSVue program was used to create DSS file for the rain gage data. The completed HEC-HMS model was calibrated for use in simulating three measured storm events and cell size of 10000m, 5000m, 2000m, 1000m was chosen for the application. As the result of applying distributed rainfall-runoff model to analyze relatively good agreement for peak discharge, runoff volume and peak time.

Optimization of Growth Environment in the Enclosed Plant Production System Using Photosynthesis Efficiency Model (광합성효율 모델을 이용한 밀폐형 식물 생산시스템의 재배환경 최적화)

  • Kim Keesung;Kim Moon Ki;Nam Sang Woon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.209-216
    • /
    • 2004
  • This study was aimed to assess the effects of microclimate factors on lettuce chlorophyll fluorescent responses and to develop an environment control system for plant growth by adopting a simple genetic algorithm. The photosynthetic responses measurements were repeated by changing one factor among six climatic factors at a time. The maximum Fv'/Fm' resulted when the ambient temperature was $21^{\circ}C,\;CO_2$ concentration range of 1,200 to 1,400 ppm, relative humidity of $68\%$, air current speed of $1.4m{\cdot}s^{-1}$, and the temperature of nutrient solution of $20^{\circ}C$. In PPF greater than $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, Fv'/Fm' values were decreased. To estimate the effects of combined microclimate factors on plant growth, a photosynthesis efficiency model was developed using principle component analysis for six microclimate factors. Predicted Fv'/Fm' values showed a good agreement to measured ones with an average error of $2.5\%$. In this study, a simple genetic algorithm was applied to the photosynthesis efficiency model for optimal environmental condition for lettuce growth. Air emperature of $22^{\circ}C$, root zone temperature of $19^{\circ}C,\;CO_2$ concentration of 1,400 ppm, air current speed of $1.0m{\cdot}s^{-1}$, PPF of $430{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and relative humidity of $65\%$ were obtained. It is feasible to control plant environment optimally in response to microclimate changes by using photosynthesis efficiency model combined with genetic algorithm.