• Title/Summary/Keyword: M2M Device

Search Result 2,303, Processing Time 0.027 seconds

Data Interworking Model Between DLMS and LwM2M Protocol (DLMS와 LwM2M 프로토콜 간 데이터 연동 모델 연구)

  • Myoung, Nogil;Park, Myunghye;Kim, Younghyun;Kang, Donghoon;Eun, Changsoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.29-33
    • /
    • 2020
  • Despite the same system architecture and operation principle, Advanced Metering Infrastructure (AMI) and Internet of Things (IoT) are recognized as a heterogeneous system. This is due to the different object modeling and communication protocols used in smart meters and sensors. However, data interworking between AMI and IoT is expected to be inevitable in the future. In this paper, we propose Device Language Message Specification (DLMS) to Lightweight Machine to Machine (LwM2M) conversion model. The proposed interworking model can reduce the packet size by 46.5% compared to that of the encapsulation method.

Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device - (수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치-)

  • Hong, J.H.;Park, W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

The Densification and Photoluminescence Characteristics of Ca-α-SiAlON:Eu2+ Plate Phosphor

  • Park, Young-Jo;Lee, Jae-Wook;Kim, Jin-Myung;Golla, Brahma Raju;Yoon, Chang-Bun;Yoon, Chulsoo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.280-287
    • /
    • 2013
  • Plate-type phosphor is a promising substitute in overcoming the issues related to the powder phosphor paste mixed with resin. In this research, $Ca-{\alpha}-SiAlON:Eu^{2+}$ plate phosphor ($Ca_xSi_{12-(m+n)}Al_{m+n}O_nN_{16-n}:Eu_y$) was investigated for the varied compositions (m,n) of the host crystal with the fixed Eu content (y). Densification was promoted for the compositions with increasing 'm' values for the m=2n relationship. Dictated by the Eu concentration inside the phosphor crystal, photoluminescence intensity was stronger in ${\alpha}2$ specimen (m = 3.0, n = 1.5) containing the second phases when compared to ${\alpha}1$ specimen (m = 1.5, n = 0.75) comprising a single-phase ${\alpha}$-SiAlON. The concentration of Eu in the non-emitting amorphous interfacial glass phase was 2~4 times of the designed Eu concentration inside the ${\alpha}$-SiAlON crystal.

Effect of audio distraction with thermomechanical stimulation on pain perception for inferior alveolar nerve block in children: a randomized clinical trial

  • Devendra Nagpal;Dharanshi Viral Amlani;Pooja Rathi;Kavita Hotwani;Prabhat Singh;Gagandeep Lamba
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.6
    • /
    • pp.327-335
    • /
    • 2023
  • Background: Pain control is a crucial aspect of pediatric dentistry for patient management. Thermo-mechanical devices (BuzzyTM Pain Care Labs, USA) work on the concept of vibration and cooling and have shown promising results in pain control during local anesthesia in pediatric dentistry. On the other hand, audio distraction has also been used for pain management. The amount of pain endured is determined by the patient's perception and attentiveness. Thus, if audio function is added to the thermomechanical device it might increase its efficiency. Hence, the present study aimed to compare pain on injection using a thermo-mechanical device with and without audio during inferior alveolar nerve block (IANB) injection in children aged 5-10 years old. Methods: Twenty-eight children aged between 5 and 10 indicated for IANB were included in this randomized study. Children who were undergoing the dental procedure were divided into 2 groups, with 14 children in each group. The study group was the thermo-mechanical device with audio distraction; the control group was the thermo-mechanical device without audio distraction. IANB was administered. Subjective pain evaluation was performed using the Wong-Baker Faces Pain Rating Scale (WBFPR) and objective pain evaluation was done using the Faces, Leg, Activity, Consolability, Cry (FLACC) scale. Results: The outcome depicted a significant reduction in pain on injection for both objective and subjective evaluations in the thermo-mechanical device with an audio distraction group. Conclusions: Less pain on injection was observed, when a thermo-mechanical device was used with audio distraction for IANB procedures.

Synthesis and Characterization of 9,9'-Diethyl-2-diphenylaminofluorene Derivatives as Blue Fluorescent Materials for OLEDs

  • Oh, Suh-Yun;Lee, Kum-Hee;Seo, Ji-Hoon;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1593-1598
    • /
    • 2011
  • Blue fluorescent materials based on 9,9'-diethyl-2-diphenylaminofluorene derivatives were synthesized and characterized. These materials were used as the blue dopant materials for the emitting layer of organic light-emitting diode devices with the following device structure: ITO/DNTPD (40 nm)/NPB (20 nm)/MADN: dopants (2%, 20 nm)/$Alq_3$ (40 nm)/Liq (1.0 nm)/Al. All devices exhibited highly efficient blue emission. One of these devices exhibited a maximum luminance, luminous efficiency, power efficiency and CIE x, y coordinates of 8400 $cd/m^2$, 8.10 cd/A at 20 $mA/cm^2$, 3.36 lm/W at 20 $mA/cm^2$ and (0.151, 0.159), respectively. A deep blue device with CIE coordinates of (0.152, 0.139) showed the maximum luminance, luminous efficiency and power efficiency of 8630 $cd/m^2$, 6.31 cd/A at 20$mA/cm^2$ and 2.62 lm/W at 20 $mA/cm^2$, respectively.

A study on the development of a virtual power plant platform for the Efficient operation of small distributed resources (소규모 분산자원의 효율적 운용을 위한 가상발전소 플랫폼 개발)

  • Kim, Hee-Chul;Hong, Ho-Pyo
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.365-371
    • /
    • 2021
  • In this study, The Virtual Power Plant (VPP) solution platform considered in this study minimizes the cost and investment risk associated with the construction of power generation and transmission facilities. In addition, it includes a Demand Response (DR) program operation function to meet consumers' electricity demand. With the introduction of VPP, it is possible to provide more eco-friendly and efficient power by responding to changes in consumer load in real time through existing generators and DR programs without large-scale facility investment in power generation and transmission/distribution sectors. In order to link the communication device to the solar power and ESS linkage device, it is necessary to transmit data in the control/state between the device device and the edge system and develop an IoT device and interworking platform (OneM2M).

Electrical and Optical Properties of Partially Doped Blue Phosphorescent OLEOs (부분 도핑을 이용한 청색 인광 OLEDs의 전기 및 광학적 특성)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.6
    • /
    • pp.512-515
    • /
    • 2009
  • We have fabricated blue phosphorescent organic light emitting diodes (PHOLEDs) using a 3,5'-N,N'-dicarbazole-benzene (mCP) host and iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$] picolinate (Flrpic) guest materials, The Flrpic was partially doped into the mCP host layer, for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs. The recombination of electrons and holes takes place inside the mCP layer adjacent to the mCP/hole blocking layer interface. The best current efficiency was obtained in a device with an emission layer structure of mCP (10 nm)/mCP:Flrpic (20 nm, 10%). The high current efficiency in this device was attributed to the confinement of Ffrpic triplet excitons by the undoped mCP layer with high triplet energy, which blocks diffusion of Ffrpic excitons to the adjacent hole transport layer with a lower triplet energy.

Fabrication and Characterization of Dye-sensitized Solar Cells based on Anodic Titanium Oxide Nanotube Arrays Sensitized with Heteroleptic Ruthenium Dyes

  • Shen, Chien-Hung;Chang, Yu-Cheng;Wu, Po-Ting;Diau, Eric Wei-Guang
    • Rapid Communication in Photoscience
    • /
    • v.3 no.1
    • /
    • pp.16-19
    • /
    • 2014
  • Anodic self-organized titania nanotube (TNT) arrays have a great potential as efficient electron-transport materials for dye-sensitized solar cells (DSSC). Herewith we report the photovoltaic and kinetic investigations for a series of heteroleptic ruthenium complexes (RD16-RD18) sensitized on TNT films for DSSC applications. We found that the RD16 device had an enhanced short-circuit current density ($J_{SC}/mAcm^{-2}=15.0$) and an efficiency of power conversion (${\eta}=7.2%$) greater than that of a N719 device (${\eta}=7.1%$) due to the increasing light-harvesting and the broadened spectral features with thiophene-based ligands. However, the device made of RD17 (adding one more hexyl chain) showed smaller $J_{SC}(14.1mAcm^{-2})$ and poorer ${\eta}(6.8%)$ compare to those of RD16 due to smaller amount of dye-loading and less efficient electron injection for the RD17 device than for the RD16 device. For the RD18 dye (adding one more thiophene unit and one more hexyl chain), we found that the device showed even lower $J_{SC}(13.2mAcm^{-2}) $ that led to a poorest device performance (${\eta}=6.2%$) for the RD18 device. These results are against to those obtained from the same dyes sensitized on $TiO_2$ nanoparticle films and they can be rationalized according to the electron transport kinetics measured using the methods of charge extraction and transient photovoltage decays.

The Classic Security Application in M2M: the Authentication Scheme of Mobile Payment

  • Hu, Liang;Chi, Ling;Li, Hong-Tu;Yuan, Wei;Sun, Yuyu;Chu, Jian-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.131-146
    • /
    • 2012
  • As one of the four basic technologies of IOT (Internet of Things), M2M technology whose advance could influence on the technology of Internet of Things has a rapid development. Mobile Payment is one of the most widespread applications in M2M. Due to applying wireless network in Mobile Payment, the security issues based on wireless network have to be solved. The technologies applied in solutions generally include two sorts, encryption mechanism and authentication mechanism, the focus in this paper is the authentication mechanism of Mobile Payment. In this paper, we consider that there are four vital things in the authentication mechanism of Mobile Payment: two-way authentication, re-authentication, roaming authentication and inside authentication. Two-way authentication is to make the mobile device and the center system trust each other, and two-way authentication is the foundation of the other three. Re-authentication is to re-establish the active communication after the mobile subscriber changes his point of attachment to the network. Inside authentication is to prevent the attacker from obtaining the privacy via attacking the mobile device if the attacker captures the mobile device. Roaming authentication is to prove the mobile subscriber's legitimate identity to the foreign agency when he roams into a foreign place, and roaming authentication can be regarded as the integration of the above three. After making a simulation of our proposed authentication mechanism and analyzing the existed schemes, we summarize that the authentication mechanism based on the mentioned above in this paper and the encryption mechanism establish the integrate security framework of Mobile Payment together. This makes the parties of Mobile Payment apply the services which Mobile Payment provides credibly.

Performance Evaluation of Combined Sewer Overflow Treatment using Filtration Pilot Device (파일럿 여과장치를 이용한 합류식하수관 월류수 처리성능 평가)

  • Lee, Jun Ho;Shin, Young Gyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.409-417
    • /
    • 2019
  • In this study, a $480m^3/day$ pilot device was constructed through laboratory experiments based on the Ministry of Environment manual. The purpose of this study was to analyze the characteristics of CSO treatment and backwashing characteristics by applying the pilot device to the field. The purpose of this study was to acquire the basic data necessary for the design and operation management of the real scale filtration type non-point pollution control system. The filtration was conducted while maintaining the linear velocity of 20m/hour. The CSO treatment efficiencies of the pilot devices were 0.4-76.1%(mean 49.0 %), SS 51.4-91.6%(mean 77.8%), COD 22.2-59.4% (mean 38.3%) and TP 14.5-52.6%(mean 38.1%),respectively. The correlation coefficient between SS and the turbidity of influent water was 0.90, higher than that of CSO. To operate the treatment system effectively, the turbidity can be easily measured in real time as the monitoring item is the most appropriate because SS is the main target substance of the non-point source. As a result of analyzing the adsorbent treatment characteristics of PP filter material applied to this pilot device, the average particle diameter range of influent was $4.6-40.1{\mu}m$(mean $21.2{\mu}m$) and the treated water was $0.9-24.5{\mu}m$(mean $6.4{\mu}m$), respectively. Particles of approximately 10m or less are leached out, and so it is necessary to compensate for the raw water containing micro particulate matter.