• Title/Summary/Keyword: M2 polarization

Search Result 641, Processing Time 0.025 seconds

Fabrication and Properties of MFSFET′s using LiNbO$_3$ film (LiNbO$_3$를 이용한 MFSFET의 제작 및 특성)

  • 정순원;김채규;이상우;김광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.63-66
    • /
    • 1998
  • Prototype MFSFET′s using ferroelectric oxide LiNbO$_3$ as a gate insulator have been successfully fabricated with the help of 2 sheets of metal masks and demonstrated nonvolatile memory operations of the MFSFET′s. The estimated field-effect electron mobility and transconductance on a linear region of the fabricated FET were 600 $\textrm{cm}^2$/V.s and 0.16 mS/mm, respectively. The drain current of the "on" state was more than 4 orders of magnitude larger than the "off" state current at the same "read" gate voltage of 0.5 V, which means the memory operation of the MFSFET. A write voltage as low as $\pm$3 V, which is applicable to low power integrate circuits, was used for polarization reversal.

  • PDF

Dielectric Properties of PZT(20/80)/PZT(80/20) Heterolayered Thick Films Fabricated by Screen-printing Method

  • Lee, Sung-Gap;Lee, Young-Hie
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.129-133
    • /
    • 2006
  • Ferroelectric PZT heterolayered thick films were fabricated by the alkoxide-based sol-gel method. PZT(20/80) and PZT(80/20) paste were made and alternately screen-printed on the alumina substrates. The coating and drying procedure was repeated 4 times to form the heterolayered thick films. The thickness of the PZT heterolayered thick films was approximately $60{\mu}m$. All PZT thick films showed the typical XRD patterns of a polycrystalline rhombohedral structure. And in the PZT thick films sintered at $1100^{\circ}C$, the pyrochlore phase was observed due to the evaporation of PbO. The relative dielectric constant and the dielectric loss of the PZT thick films sintered at $1050^{\circ}C$ were 445.2 and 1.90 % at 1 kHz, respectively. The remanent polarization and coercive field of the PZT thick films sintered at $1050^{\circ}C$ were $14.15{\mu}C/cm^2$ and 19.13 kV/cm, respectively.

OH MASERS TOWARDS THE W49A STAR-FORMING REGION WITH MERLIN AND e-MERLN OBSERVATIONS

  • ASANOK, KITIYANEE;ETOKA, SANDRA;GRAY, MALCOLM D.;RICHARDS, ANITA M.S.;KRAMER, BUSABA H.;GASIPRONG, NIPON
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.125-127
    • /
    • 2015
  • We present preliminary results from OH ground state phase referenced observations carried out with the Multi Element Radio Linked Interferometer Network (MERLIN) and e-MERLIN towards the massive star forming region W49A. There are three active SFRs within this complex: W49 North (W49 N), W49 South (W49 S) and W49 South West (W49 SW). The first epoch of observations was obtained in 2005 with MERLIN while the second epoch was obtained in 2013 with the e-MERLIN upgraded system. In this paper, we present 1665 and 1720 MHz maser emission towards W49 S and W49 SW. Overall, both epochs show good agreement with the previous observations of Argon et al. (2000) carried out with the Very Large Array (VLA). The better sensitivity and wider velocity coverage of the MERLIN/e-MERLIN observations allowed us to discover a new 1720 MHz OH maser site in W49 S.

Effects of Chloride Concentration on Zinc Electroplating (염화물의 농도가 전기아연도금에 미치는 영향)

  • Kim, Jae-Min;Lee, Jung-Hoon;Kim, Yong-Hwan;Kim, Young-Ha;Hong, Moon-Hi;Jeong, Hwon-Woo;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • The zinc electroplating with respect to the chloride concentration was investigated by X-ray diffraction(XRD), scanning electron microscope (SEM), and cathodic polarization measurement. The cathodic overpotential during electroplating was first decreased and then increased with increase of chloride concentration in electrolyte. The decreased cathodic overpotential leads to preferred orientation of (002) plane, high current efficiency and satisfactory zinc deposits. The increased cathodic overpotential causes random orientation, low current efficiency and edge burning. The cathodic overpotential was affected by chloride concentration in electrolyte, not by the kind of chloride, such as NaCl and KCl. An optimized chloride concentration was 3 M for zinc electroplating. Also, it is considered that NaCl can be a alternation for KCl as a main salt of zinc electroplating bath.

Electrochemical Damage Characteristics of Anodized 5083 Aluminum Alloy with Flow Rate in Seawater (양극산화 처리된 5083 알루미늄 합금의 해수 내 유속변화에 따른 전기화학적 손상 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • In this study, electrochemical damage behaviors with flow rate were investigated for anodized 5083 aluminum alloy in seawater. As the results of anodic polarization experiments and potentiostatic experiments at +1.0 V (vs. SSCE), the non-flow condition presented largely damaged surface resulting from a tendency of local pitting damage. Under various flow rate conditions, however, less surface damages under the application of anodic potential was obtained which is attributed to no accumulation of $H^+$ and $Cl^-$ ions on the surface. On the other hand, the results of the potentiostatic experiments at -1.0 V (vs. SSCE) with flow rate showed that anodized 5083 aluminum alloys could achieve the effective cathodic protection by low cathodic protection current density less than $2.61{\times}10^{-7}A/cm^2$ even under high flow rate of 1 m/s.

Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery (주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성)

  • Oh, KkochNim;Lee, Kyu Hyuk;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-belt continuous casting. Potentiodynamic polarization tests were performed to evaluate corrosion resistance. Cyclic voltammetry was done to examine oxidation and reduction reactions occurring on the surface of each alloy in 4.8 M H2SO4 solution. Electrochemical test results implied that the Pb alloy prepared with the twin-belt casting method was less stable than that cast with the twin-roll method. Such results might be due to precipitations formed during the casting process. Rolling did not appear to affect the corrosion behavior of the twin-roll samples with Ag < 10 mg/kg, while it reduced the anodic reaction of Ag on the surface of the twin-belt sample with 30.5 mg/kg Ag.

Surface Hardness and Corrosion Behavior of AISI 420 Martensitic Stainless Steels Treated by Plasma Oxy-Nitriding Processing (플라즈마 산질화처리된 AISI 420 마르텐사이트 스테인레스 강재의 표면 경도 및 부식 거동)

  • Jinhan Kim;Kwangmin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.309-314
    • /
    • 2023
  • This study aimed to address the limitations of traditional plasma nitriding methods by implementing a short-term plasma oxy-nitriding treatment on the surface of AISI 420 martensitic stainless steel. This treatment involved the sequential formation of nitride and oxide layers, to enhance surface hardness and corrosion resistance, respectively. The process resulted in the formation of a 20 ㎛-thick nitride layer and a 3 ㎛-thick oxide layer on the steel surface. Initially, the hardness increased by 2.2 times after nitriding, followed by a subsequent decrease of approximately 31 % after oxidation. While the nitriding process reduced corrosion resistance, the subsequent oxidation process led to the formation of a passive oxide film, effectively resolving this issue. The pitting corrosion of the oxide passive film started at 82.6 mVssc, providing better corrosion resistance characteristics than the nitride layer. Consequently, the trade-off between surface hardness and corrosion resistance in plasma oxy-nitrided AISI 420 martensitic stainless steel is anticipated to be recognized as an innovative and comprehensive surface treatment process for biomedical components.

Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO2 Positive Electrode in Lithium-ion Batteries (리튬이온 이차전지용 고로딩 LiCoO2 양극의 전극설계에 따른 전기화학적 성능연구)

  • Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • Highly loaded LiCoO2 positive electrodes are prepared to construct high-energy density lithium-ion batteries, their electrochemical performances are evaluated. For the standard electrode, a loading of about 2.2 mAh/㎠ is used, and for a high-loading electrode, an electrode is manufactured with a loading level of about 4.4 mAh/㎠. The content of carbon black as electronic conducting additive, and the porosity of the electrode are configured differently to compare the effects of electron conduction and ionic conduction in the highly loaded LiCoO2 electrode. It is expected that the electrochemical performance is improved as the amount of the carbon black increases, but the specific capacity of the LiCoO2 electrode containing 7.5 weight% carbon black is rather reduced. When the conductive material is excessively provided, an increase of electrode thickness by the low content of the LiCoO2 active material in the same loading level of the electrode is predicted as a cause of polarization growth. When the electrode porosity increases, the path of ionic transport can be extended, but the electron conduction within the electrode is disadvantageous because the contact between the active material and the carbon black particles decreases. As the electrode porosity is lowered through the sufficient calendaring of the electrode, the electrochemical performance is improved because of the better contact between particles in the electrode and the reduced electrode thickness. In the electrode design for the high-loading, it is very important to construct the path of electron conduction as well as the ion transfer and to reduce the electrode thickness.

Cycle Performances of Spinel-type $Li_xMn_2O_4$ in 4V Lithium Rechargeable Cells (리튬 2차 전지의 양극재료로 사용되는 스피넬형 망간산화물의 충방전 특성)

  • Jang, Dong H.;Oh, Seung M.
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.122-134
    • /
    • 1998
  • In this review, we describe the electrochemical properties of spinel-type lithium manganese oxides $(Li_xMn_2O_4)$ and their failure modes encountered in 4 V lithium rechargable cells. The long-term cyclability (reversibility) of spinel electrodes is determined partly by the purity, size and distribution of spinel particles, and also by the microstructure of electrode plates. A proper selection of electrolytes is another important task in cyclability enhancements. In the spinel preparation, impurity formation and cation mixing should be minimized. The carbon content in composite cathodes should also be minimized to the extent where the cell polarization does not bring about adverse effects on cell performances. The binder content should be optimized on the basis of dispersion of component materials and mechanical strength of the plates. Cathodic capacity losses arising from solvent oxidation and spinel dissolution can be mitigated by using electrolytes composed of carbonates and/or fluorine-containing lithium salts. The carbon additives may be selected after a trade-off between the cell polarization in composite cathodes and the solvent oxidation on carbon surface.

  • PDF

커패시터에의 적용을 위해 PET 필름에 스퍼터 증착한 ZrO2 박막의 특성

  • Gwon, Neung;Fei, Chen;Ryu, Han;Park, Sang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.389.1-389.1
    • /
    • 2014
  • 최근의 환경 및 에너지에 대한 관심으로 수요가 증가하고 있는 하이브리드 및 전기 자동차나 태양광발전, 풍력발전용의 인버터기기에는 고에너지밀도 커패시터가 필수적이 되었다. 높은 에너지 밀도를 요구하는 전력전자, 펄스파워 등의 응용분야에 사용되는 고에너지밀도 커패시터는 PET (Polyethylene terephtalate)와 PP (Polypropylene)와 같은 폴리머 유전체를 사용하는 범용 필름 커패시터가 사용되었으나 사용 요구 조건의 한계에 도달하여, 새로운 유전체를 적용하는 커패시터가 절실히 필요한 상황이다. PET와 PP와 같은 유전체는 유전상수가 2~3의 낮은 값을 가지고 있어 고에너지밀도를 구현하기가 어렵다. 본 연구에서는 새롭게 요구되고 있는 고에너지 밀도 커패시터의의 성능을 만족시키기 위하여 $20{\sim}50{\mu}m$ 두께의 PET 필름상에 세라믹 유전체인 $ZrO_2$ 박막을 스퍼터(Sputter) 증착법에 의해 코팅하여 종래의 필름 커패시터와 세라믹 커패시터의 장점을 갖는 커패시터를 제조하기 위한 박막 유전재료의 개발을 목표로 하였다. 수백 nm~수 ${\mu}m$ 두께의 $ZrO_2$ 박막을 스퍼터링 공정조건에 따라 증착한 후 박막의 결정성, 기판과의 부착성, 증착속도, 유전상수, 절연파괴강도, 온도안정성 등을 XRD, SEM, AFM, EDS, XPS, Impedance analyzer 등에 의해 평가하였다. $ZrO_2$ 유전체막은 상온에서 증착하였음에도 정방정(tetragonal)구조의 결정질로 성장하였고 증착압력이 증가함에 따라 주피크의 세기가 감소하였다. 증착 중 산소가스를 주입하였을 경우에도 결정질막으로 성장하였다. 증착막들은 산소가스의 양이 증가함에 따라 짙은 흰색으로 변하였으며 PET 기판과의 접착력도 약해졌다. 또한 거칠기는 Ar가스만으로 증착한 경우보다 증가하였으며 24~66 nm의 평균 거칠기값을 보였다. PET위에 Ar가스만으로 증착한 $ZrO_2$의 비유전율은 1kHz에서 116~87의 비유전율을 보여 PET에 비해 매우 우수한 특성을 보였다. $ZrO_2$ 막들은 300kV/cm의 전계에서 대략 10-8A 이하의 누설전류를 보였다. 증착가스비를 달리하여 제조된 시편에서도 유사한 누설전류값을 나타내었다. 300 kV/cm 전후의 전계까지 측정한 $ZrO_2$ 막의 P-E (polarization-electric field) 특성을 확인하였는데, 5 mTorr의 압력에서 증착한 막은 253 kV/cm에서 $5.5{\mu}C/cm^2$의 분극값을 보였다. P-E커브의 기울기와 분극량에 따라 에너지밀도가 달라지므로 공정조건에 따라 에너지밀도가 변화됨을 예측할 수 있었다. PET위에 스퍼터 증착한 $ZrO_2$ 유전체막은 5mTorr의 Ar가스분위기에서 제조할 때 가장 안정적인 구조를 보였으며, 고에너지밀도 커패시터에의 적용가능성을 보였다.

  • PDF