• Title/Summary/Keyword: M125 Booster

Search Result 4, Processing Time 0.019 seconds

Simplified Parametric Study on M125 Booster Mechanism and its Application for Determining the Characteristic Constant of Arming Distance (M125 부스터 메카니즘의 해석 및 응용)

  • Rim, One kwon;Kim, Sung shik;Bang, Jae won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.409-414
    • /
    • 2015
  • M125 booster is one of the reliable S&A device(safety and arming device) to determine the arming distance of fuze for gun ammunitions from 90 mm to 8 inch in diameter. And it is also well known that the arming distance of M125 booster is determined by the multiplication value of the gun tube property(traveled distance per turn of projectile) and the S&A device property(number of turns to arm), not by the projectile muzzle velocity. We have tried and succeeded in executing a proper analysis on M125 booster to figure out its characteristic constant of arming distance by considering only the gun tube properties and the S&A device properties. More detailed arming distance will be analyzed in the future by considering dynamic characteristics on all elements in the S&A device with vector analysis.

Active Immunization against Adrenocorticotropic Hormone in Growing-Finishing Barrows: An Initial Trial and Evaluation

  • Lee, C.Y.;Baik, K.H.;Jeong, J.H.;Lee, S.D.;Park, J.K.;Song, Y.M.;Kim, Y.S.;Sohn, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.3
    • /
    • pp.410-415
    • /
    • 2002
  • Adrenal glucocorticoids, secreted by the stimulus of adrenocorticotropic hormone (ACTH), are catabolic hormones in the pig. The present study was conducted to find whether active immunization against ACTH would suppress cortisol secretion accompanied by an increased growth rate in growing-finishing barrows. ACTH was conjugated to keyhole limpet hemocyanin or human histone using glutaraldehyde or 3-maleimidobenzoic acid N-hydroxysuccinimide, under a 2 (ACTH vs no hapten)${\times}$2 (carrier)${\times}$2 (crosslinker) factorial arrangement of treatments. Cross-bred barrows weighing approximately 25 kg were injected with an ACTHcarrier or carrier only conjugate every 4th wk and slaughtered at approximately 110 kg body weight. Antibodies against ACTH were detected in serum, as determined by $[^{125}I]$ACTH-binding activity, in most animals immunized against the ACTH conjugate, but not in carrier only-injected animals, except for the animals which had received the hapten conjugated to histone via glutaraldehyde. The $[^{125}I]$ACTH-binding activity of serum increased after the second booster injection, but overall ACTH antibody titer was very low. Main effect was not detected not only for the carrier and crosslinker but for the hapten in serum cortisol concentration, ADG, loin muscle area, backfat thickness and longissimus muscle composition including fat and protein. In addition, bound $[^{125}I]$ACTH percentage had no relation to cortisol concentration or to any of the above growth-related variables. Results suggest that ACTH or its conjugates used in the present study were not immunogenically potent enough to affect the glucocorticoid secretion and thus the growth of the immunized pigs.

A 0.8-V Static RAM Macro Design utilizing Dual-Boosted Cell Bias Technique (이중 승압 셀 바이어스 기법을 이용한 0.8-V Static RAM Macro 설계)

  • Shim, Sang-Won;Jung, Sang-Hoon;Chung, Yeon-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • In this paper, an ultra low voltage SRAM design method based on dual-boosted cell bias technique is described. For each read/write cycle, the wordline and cell power node of the selected SRAM cells are boosted into two different voltage levels. This enhances SNM(Static Noise Margin) to a sufficient amount without an increase of the cell size, even at sub 1-V supply voltage. It also improves the SRAM circuit speed owing to increase of the cell read-out current. The proposed design technique has been demonstrated through 0.8-V, 32K-byte SRAM macro design in a $0.18-{\mu}m$ CMOS technology. Compared to the conventional cell bias technique, the simulation confirms an 135 % enhancement of the cell SNM and a 31 % faster speed at 0.8-V supply voltage. This prototype chip shows an access time of 23 ns and a power dissipation of $125\;{\mu}W/Hz$.

Studies on the Duration of Immunity and Production of Antibody following Immunization with Inactivated Killed Japanese Encephalitis Vaccine (일본뇌염 백신 접종후 항 일본뇌염 항체의 생성율과 지속적인 면역반응에 대한 연구)

  • Cho, H.W.;Nam, J.H.;Lee, H.D.;Koh, H.C.;Kim, J.J.;Kim, E.J.;Lee, Y.S.;Lu, J.J.
    • Pediatric Infection and Vaccine
    • /
    • v.4 no.1
    • /
    • pp.116-125
    • /
    • 1997
  • Purpose : Studies on the duration of immune response against Japanese encephalitis virus from recipients with JE vaccine (Nakayama-NIH strain) in Korea. Methods : To determinate the immune response and the duration of antibody against JE vaccine, 213 students were examined since 1994 using hemmaglutination inhibition test and plaque reduction neutralization test (PRNT). Results : 24 months after the first vaccination, haemmaglutination inhibition and neutralizing antibody maintained from the recipients 63.4% (>1:20) and 100% (>1:20), respectively. In April 1996, one dose booster to the same recipients those who were vaccinated in 1994, the GMT antibody for HI and PRNT titer were both increased from 1:11.6 to 1:13.2 and 1:275.7 to 1:348.1, respectively, after 6 months booster (after 30 months from the initial vaccination). This results showed that the antibody from the active immunity could be maintained more than 12 months after the initial vaccination. On the basis of these results, inactivated killed JE vaccine (Nakayama-NIH strain) using for preventing against JE purpose seems to produce antibody enough to protect against JE at present. Conclusions : Along with the results of this study demonstrating duration of antibody, the active immunization could be maintained as long as by initial vaccination of 2 doses, a single dose of booster vaccination made during a period of 1 month to 12 months and the successive booster vaccination by 2 or 3 year intervals. However, the immunization schedule should be concerned with both epidemiology of disease and the immune response of vaccinated individuals.

  • PDF