• Title/Summary/Keyword: M1 gene

Search Result 3,891, Processing Time 0.034 seconds

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

RFLP Analysis of cry1 and cry2 Genes of Bacillus thuringiensis Isolates from India

  • Patel, Ketan D.;Ingle, Sanjay S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.729-735
    • /
    • 2012
  • The PCR-RFLP method has been useful for detection of known genes and identification of novel genes. In the present study, degenerate primers were designed from five groups of cry1 genes for PCR-RFLP analysis. Bacillus thuringiensis (Bt) isolates from different regions were evaluated for PCR amplification of various cry1 genes using newly designed primers and cry2 genes using reported primers. PCR analysis showed an abundance of cry1A genes and especially cry1Ac genes in isolates from all regions. RFLP analysis revealed the presence of multiple cry1A genes in isolates from central and southern regions. Unique digestion patterns of cry1A genes were observed in isolates from each region. Few of the isolates represented a digestion pattern of cry1A genes that did match to any of the known cry1A genes. RFLP analysis suggested an abundance of cry2Ab along with a novel cry2 gene in Bt isolates from different regions of India. Sequence analysis of the novel cry2 gene revealed 95% sequence identity to cry2Ab and cry2Ah genes. Phylogenetic analysis revealed that the novel cry2 gene could have diverged earlier than the other cry2 genes. Our results encourage finding of more diverse cry2 genes in Bt isolates. Rarefaction analysis was used to compare cry1A gene diversity in isolates from different soil types. It showed a higher degree of cry1A gene diversity in isolates from central region. In the present study, we propose the use of novel degenerate primers for cry1 genes and the PCR-RFLP method using a single enzyme to distinguish multiple cry1A and cry2 genes as well as identify novel genes.

Sequence comparisons of 28S ribosomal DNA and mitochondrial cytochrome c oxidase subunit I of Metagonimus yokogawai, M. takahashii and M. miyatai

  • Lee, Soo-Ung;Huh, Sun;Sohn, Woon-Mok;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.3
    • /
    • pp.129-135
    • /
    • 2004
  • We compared the DNA sequences of the genus Metagonimus: M. yokogawai, M. takahashii, and M. miyatai. We obtained 288 D1 ribosomal DNA (rDNA) and mitochondrial cytochrome c oxidase subunit I (mtCOI) fragments from the adult worms by PCR, that were cloned and sequenced. Phylogenetic relationships inferred from the nucleotide sequences of the 28S D1 rDNA and mtCOI gene. M. takahashii and M. yokogawai are placed in the same clade supported by DNA sequence and phylogenie tree analysis in 28S D1 rDNA and mtCOI gene region. The above findings tell us that M. takahashii is closer to M. yokogawai than to M. miyatai genetically. This phylogenetic data also support the nomination of M. miyatai as a separate species.

Co-occurrence of Matsumuraeses falcana and M. phaseoli (Lepidoptera: Tortricidae) in Soybean Fields, and Polymorphism of Cytochrome c Oxidase Subunit 1 Gene Nucleotide (콩 포장에서 어리팥나방과 팥나방(나비목: 잎말이나방과)의 동시 발생과 시토크롬 c 산화효소 1 유전자 염기서열의 다형성)

  • Jin Kyo, Jung;Eun Young, Kim;Taeman, Han
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.641-649
    • /
    • 2022
  • Leaf-rolling moths were collected from soybean fields and identified as Matsumuraeses falcana and Matsumuraeses phaseoli by comparison with laboratory-reared species based on the nucleotide sequence (658 bp) of the mitochondrial cytochrome c oxidase 1 subunit gene (COX1). Ten haplotypes with 0.15-0.46% genetic distance from each other in COX1 were found in 47 samples of M. falcana, in which haplotype A was dominant (approximately 70%). Only one type of COX1 was found in 30 samples of M. phaseoli, and its sequence showed 4.11-4.61% genetic distance from those of M. falcana. Amino acid sequences translated from COX1 were identical in all samples of both species, and they showed synonymous substitutions. Larvae of both species caused damage to soybean leaves and pods and co-occurred simultaneously in the field. The average density of M. falcana was 1.5 times higher than that of M. phaseoli. The results clearly indicate that soybean was the host plant for both species. In addition, Elodia flavipalpis (Diptera: Tachinidae) was found to be a larval parasitoid of Matsumuraeses sp. through identification of the COX1 gene.

Regulation of Glyine max Ornithine Decarboxylase by Salt and Spermine

  • Lee, Yong-Sun;Lee, Geun-Taek;Cho, Young-Dong
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.478-483
    • /
    • 2001
  • We examined the effect of CsCl and spermine on the induction of ornithine decarboxylase (ODC), a key enzyme in polyamine synthesis form Glycine max axes. Transcription of the ODC gene was induced by 0.1 and 1 mM of CsCl, and the amount of putrescine was increased 3.5-fold by 1 mM CsCl treatment. Spermine also induced the expression of the ODC gene in a die dependent manner. However, CsCl provoked an increase in the active phosphorylated ERK (pERK), a central element of the mitogen-activated protein kinase (MAPK) cascade. Our data demonstrates an interaction between the ODC induction and the MAPK signaling pathway, and suggests that the latter may be involved in cell signaling in salt-stressed plants.

  • PDF

Association between PCR-RFLP Polymorphism of the Fifth Intron in Lipoprotein Lipase Gene and Productive Traits in Pig Resource Family

  • Zhang, B.Z.;Lei, M.G.;Deng, C.Y.;Xiong, Y.H.;Zuo, B.;Li, F.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.458-462
    • /
    • 2005
  • The study was aimed at detecting polymorphism of the fifth intron in lipoprotein lipase (LPL) gene and analyzing association between the polymorphism and productive traits. A pair of primers was designed for amplifying the fifth intron. Sequence analysis indicated that a G1171C substitution existed in Large White breed. The mutation was detected by PCR-AfaI-RFLP. Polymorphism analysis in a pig resource family showed that there existed significant effects on carcass and meat quality traits. Thoraxwaist fat thickness of BB genotype was significantly higher (14.2%, p<0.05) than that of AA on carcass traits, while BB genotype was significantly lower (3.6% p<0.01, 4.1% p<0.01; 2.3% p<0.01, 1.9% p<0.01; 1.8% p<0.01, 1.4% p<0.05) than AA and AB genotype in pH of m. Longissimus Dorsi (LD), m. Biceps Femoris (BF), m. Semipinali Capitis (SC). The allelic frequencies were also significantly different between indigenous Chinese breeds and exotic breeds. Data analyzed revealed that the mutation locus affected production traits mostly by additive effects. Based on these results, it is necessary to do more studies on LPL gene before making the LPL locus into the application of marker-assisted selection (MAS) programs.

Effects of various metal ions on the gene expression of iron exporter ferroportin-l in J774 macrophages

  • Park, Bo-Yeon;Chung, Ja-Yong
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.317-321
    • /
    • 2008
  • Macrophages play a key role in iron metabolism by recycling iron through erythrophagocytosis. Ferroportin-l (FPN1) is a transporter protein that is known to mediate iron export from macrophages. Since divalent metals often interact with iron metabolism, we examined if divalent metals could regulate the expression of FPN1 in macrophages. J774 macrophage cells were treated with copper, manganese, zinc, or cobalt at 10, 50, or $100\;{\mu}M$ for 16 to 24 h. Then, FPN1 mRNA and protein levels were determined by quantitative real-time PCR and Western blot analyses, respectively. In addition, effects of divalent metals on FPN1 promoter activity were examined by luciferase reporter assays. Results showed that copper significantly increased FPN1 mRNA levels in a dose-dependent manner. The copper-induced expression of FPN1 mRNA was associated with a corresponding increase in FPN1 protein levels. Also, copper directly stimulated the activity of FPN1 promoter-driven reporter construct. In contrast, manganese and zinc had no effect on the FPN1 gene expression in J774 cells. Interestingly, cobalt treatment in J774 cells decreased FPN1 protein levels without affecting FPN1 mRNA levels. In conclusion, our study results demonstrate that divalent metals differentially regulate FPN1 expression in macrophages and indicate a potential interaction of divalent metals with the FPN1-mediated iron export in macrophages.

Allelic variation of melanocortin-1 receptor locus in Saudi indigenous sheep exhibiting different color coats

  • Mahmoud, Ahmed H.;Mashaly, Ashraf M.;Rady, Ahmed M.;Al-Anazi, Khalid M.;Saleh, Amgad A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.154-159
    • /
    • 2017
  • Objective: This study was designed to characterize the DNA polymorphisms of the melanocortin-1 receptor (MC1R) gene in indigenous Saudi Arabian sheep breeds exhibiting different color coats, along with individuals of the Sawaknee breed, an exotic sheep imported from Sudan. Methods: The complete coding region of MC1R gene including parts of 3' and 5' untranslated regions was amplified and sequenced from three the indigenous Saudi sheep; Najdi (generally black, n = 41), Naeimi (generally white with brown faces, n = 36) and Herri (generally white, n = 18), in addition to 13 Sawaknee sheep. Results: Five single nucleotide polymorphisms (SNPs) were detected in the MC1R gene: two led to nonsynonymous mutations (c.218 T>A, p.73 Met>Lys and c.361 G>A, p.121 Asp>Asn) and three led to synonymous mutations (c.429 C>T, p.143 Tyr>Tyr; c.600 T>G, p.200 Leu>Leu, and c.735 C>T, p.245 Ile>Ile). Based on these five SNPs, eight haplotypes representing MC1R $E^d$ and $E^+$ alleles were identified among the studied sheep breeds. The most common haplotype (H3) of the dominant $E^d$ allele was associated with either black or brown coat color in Najdi and Sawaknee sheep, respectively. Two other haplotypes (H6 and H7) of $E^d$ allele, with only the nonsynonymous mutation A218T, were detected for the first time in Saudi indigenous sheep. Conclusion: In addition to investigating the MC1R allelic variation in Saudi indigenous sheep populations, the present study supports the assumption that the two independent nonsynonymous Met73Lys and Asp121Asn mutations in MC1R gene are associated with black or red coat colors in sheep breeds.

Attenuation of ROS Generation by KCNE1 Genes in Cisplatin-treated Auditory Cells

  • Kim, Eun Sook;Park, Sang-Ho;Park, Raekil
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.3
    • /
    • pp.114-119
    • /
    • 2013
  • Potassium is essential for the proper functioning of the ears. The inner ear's endolymph differs from all other extracellular fluids (in its positive potential) and in the ionic compositions in the various parts of the endolymphatic space. Ion concentration of the endolymph is 150 mM of potassium, which is comparable to the concentrations in other organs. Cisplatin (cis-diamminedichloroplatinum II: CDDP) is one of the most effective anticancer drugs, widely used against various tumors. However, its clinical use is limited by the onset of severe side effects, including ototoxicity and nephrotoxicity. For ototoxicity, a number of evidences in cytotoxic mechanism of cisplatin, including perturbation of redox status, increase in lipid peroxydation, and formation of DNA adduct, have been suggested. Therefore, in this study, the author investigated the relationship between the potassium ions on cisplatin-induced cytotoxicity in HEI-OC1 cells associated with reactive oxygen species (ROS). KCNE1 gene expression by the concentration of intracellular potassium appeared in the plasma membrane and increased the concentration of intracellular potassium. Cisplatin decreased the viability of HEI-OC1 cells, but the KCNE1 gene increased. Also, the KCNE1 gene significantly suppressed generation of intracellular ROS by cisplatin. Western blot analysis showed that the KCNE1 gene increased phase II detoxification enzymes markers such as superoxide dismutase 1 (SOD1), superoxide dismutase (SOD2), NAD(P)H:quinine oxidoreductases (NQO1), which were associated with the scavenger of ROS. These results suggest that the KCNE1 gene for intracellular potassium concentration ultimately prevents ROS generation from cisplatin and further contributes to protect auditory sensory hair cells from ROS produced by cisplatin.

  • PDF

Polymorphisms in the SERPINA1 Gene and the Risk of Chronic Obstructive Pulmonary Disease in a Korean Population (한국인에서 SERPINA1 유전자 다형성과 만성폐쇄성폐질환의 위험도)

  • Cha, Seung-Ick;Choi, Jin Eun;Lee, Jong Myung;Yoo, Seung Soo;Kim, Chang-Ho;Lee, Won Kee;Jung, Tae-Hoon;Kim, Nung Soo;Park, Jae Yong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Background: We conducted a case-control study to evaluate the potential association between SERPINA1 genotypes ($M1_{Val}$, $M1_{Ala}$, S, and Z) and the risk COPD. Methods: The study population consisted of 93 patients with COPD and 112 healthy controls. The polymerase chain reaction and restriction fragment length polymorphism for detecting the SERPINA1 variants. Results: The M2 allele of the SERPINA1 gene was significantly associated with the risk of COPD in Koreans. The effect of the M2 allele on the risk of COPD was more pronounced in the subgroup<64 years. Conclusion: These results suggest that SERPINA1 polymorphisms may contribute to a genetic predisposition for COPD. However, additional studies with larger sample sizes are required to confirm our findings.