• Title/Summary/Keyword: M.S

Search Result 53,523, Processing Time 0.065 seconds

Deposition and Erosion Relief of Riverfront by Vegetation (식생에 의한 하안 퇴적과 침식 경감)

  • Kim, Jin-Hong
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.154-160
    • /
    • 2015
  • This paper presents the field investigation of deposition and erosion relief of a riverfront using vegetation. The results obtained were as follows: Phragmites japonica showed 0.2 m of deposition and 0.3 m-0.4 m of erosion relief of river front by the critical velocity of 1.0 m/s-1.2 m/s. P. communis showed 0.1 m-0.4 m of deposition and 0.2 m-0.3 m of erosion relief by the critical velocity of 0.6 m/s-0.7 m/s. Salix gracilistyla showed 0.1 m-0.2 m of deposition and 0.4 m-0.5 m of erosion relief by the critical velocity of 1.2 m/s-1.4 m/s. Miscanthus sacchariflorus showed 0.1 m-0.4 m of deposition and 0.1 m-0.2 m of erosion relief by the critical velocity of 0.6 m/s-0.7 m/s. S. gracilistyla had the greatest role, while M. sacchariflorus had the lowest role for erosion relief. These results showed that aquatic plants had an effective role in sustaining a stable channel.

ON THE CHARACTERISTIC S-AUTOMATA

  • PARK CHIN HONG
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.779-786
    • /
    • 2005
  • In this paper we shall discuss some properties derived from the characteristic S-automaton $_x(S)_M$, using the fact that ${\mu}_S$ is an equivalence relation on M. When $L_{m}:S{\rightarrow}M$ is a left translation and $L_{M}$ is a collection of $L_{m}'s$, we shall show $_x(S)_{M}{\cong}L_{M}$. If S is commutative, we have $_x(S)_{M{\times}N{\cong}L_{M{\times}N}$. Moreover when M and N are perfect, we have $L_{M{\times}N}{\cong}L_{M}{\times}L_{N}$ and $_x(S)_{M{\times}N}{\cong}_x(S)_{M}{\times}_x(S)_N$.

Increasing Effect of Urban Instream flow in Cheongyang County by Heightening Chilgab Reservoir (칠갑지 숭상에 의한 청양 도심하천유량 증가 효과)

  • Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2107-2111
    • /
    • 2009
  • 인근의 저수지의 높이를 높여 도심구간의 하천 유량이 얼마나 증가되는지 확인하기 위해 지천 상류에 위치한 유역면적 65.8 $km^2$인 청양의 도심하천 위치에서 1966년부터 2007년까지 유량을 모의하고, 목표유량을 0.31 $m^3/s$로 설정하여 상류에 위치한 유역면적 17.5 $km^2$, 저수량 512만 $m^3$인 칠갑지의 숭상으로 방류량 증가에 따른 하천유량의 증가효과를 분석한 결과는 다음과 같다. 첫째, 칠갑지 없는 경우 청양 도심하천 유황은 연평균하여 풍수량 1.49 $m^3/s$, 평수량 0.44 $m^3/s$, 저수량 0.20 $m^3/s$, 갈수량 0.16 $m^3/s$로 분석되었으며, 목표유량 0.31 $m^3/s$보다 0.15 $m^3/s$ 적게 나타났다. 둘째, 칠갑지로부터 682 ha의 논에 관개용수를 공급하는 경우 용수공급량/유역면적은 453.9 mm, 단위유역 용수공급량/강우량 비율은 39.1 %, 용수공급량/유입량 비율은 96.5 %, 용수공급량/저수량 비율은 163.7 %, 유입량/저수량 비율은 226.5 %였으며, 이수안전도는 일단위 52.4 %, 일단위 96.9 %였다. 셋째, 현재 규모의 칠갑지 운영을 고려한 청양 도심하천의 유황은 연평균하여 풍수량 1.40 $m^3/s$, 평수량 0.42 $m^3/s$, 저수량 0.19 $m^3/s$, 갈수량 0.16 $m^3/s$로 분석되어 갈수량은 칠갑지가 없는 경우와 같게 나타났다. 넷째, 칠갑지 규모를 5 m 더 높인 경우 청양 도심하천의 유황은 풍수량 1.40 $m^3/s$, 평수량 0.43 $m^3/s$, 저수량 0.24 $m^3/s$, 갈수량 0.20 $m^3/s$로 분석되어, 목표유량 0.31 $m^3/s$보다 0.11 $m^3/s$ 적게 나타났다. 다섯째, 칠갑지 규모를 10 m 더 높인 경우 청양 도심하천의 유황은 풍수량 1.42 $m^3/s$, 평수량 0.47 $m^3/s$, 저수량 0.27 $m^3/s$, 갈수량 0.23 $m^3/s$로 분석되어, 목표유량 0.31 $m^3/s$보다 0.08 $m^3/s$ 적게 나타났다. 여섯째, 칠갑지 규모를 15 m 더 높인 경우 청양 도심하천의 유황은 풍수량 1.43 $m^3/s$, 평수량 0.47 $m^3/s$, 저수량 0.27 $m^3/s$, 갈수량 0.23 $m^3/s$로 분석되어, 10 m 높인 경우와 같게 나타났다. 결과적으로 칠갑지 규모를 높여 하천유량의 증가효과는 한계가 있는 것으로 밝혀졌으며 최적규모 결정을 위해서는 추가 연구가 필요하며, 부족유량을 충족하기 위해서는 다른 방법이 추가로 필요한 것으로 나타났다.

  • PDF

M&S VV&A for Aerospace System Development : M&S Life-Cycle Model and Development Paradigm (항공우주 시스템 개발용 M&S의 VV&A: M&S 수명주기 모델 및 개발 패러다임 제안)

  • Kim, Chang-Joo;Lee, Dohyeon;Hur, Sungwook;Park, Sang-Seon;Cho, In-Je
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.508-516
    • /
    • 2017
  • The M&S (Model and Simulation) has been increasingly used in the wide area of applications and the official certification or accreditation of the M&S are becoming a mandatory requirement to prevent the risks and mishaps caused by the usage of inadequate M&Ss or by misuses of the M&S. This paper threats the VV&A (Verification, Validation, and Accreditation) for the M&S used in the development of the aerospace systems, where most M&S used in the development are derived from the physical laws and the final validation data are typically obtained through a series of flight tests after the prototype production. Considering these unique features, the paper proposes the M&S life-cycle model and development paradigm suitable for the aerospace-system development and accesses the proposed ones by comparative investigation on the relevant regulations and related literatures.

A Study on Application and Promotion of DM&S VV&A(Focused on M&S for Test and Evaluation) (국방 M&S VV&A 적용 및 발전방안 연구(시험평가를 위한 M&S를 중심으로))

  • Kim, Hyeong-Hyeon;Lee, Chang-Hee;Cho, Nae-Hyeon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.157-164
    • /
    • 2009
  • As computer industry has been rapidly developed since 1980's, it has been highly increasing to use M&S. The use of M&S can reduce development cost, time to market, and so on, and using it we can get the results of experiments which are impossible to test in real environments. But there is an important precondition on the dependability of M&S which is being developed or used. In this paper, We introduce the Key concepts of VV&A, and so forth, and We finally present the DM&S VV&A application and promotion method.

Effect of the Concentration of Nutrient Solution on the Growth of Tomato(Lycopersicon esculentum Mill.) in Substrate Culture (고형배지경에서 배양액농도가 토마토의 생육에 미치는 영향)

  • 노미영;배종향;이용범;박권우;권영삼
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 1995
  • This study was carried out to investigate the effect of the concentration of nutrient solution on the growth of tomato(Lycopersicon esculentum Mill. cv. seokwang) in substrate culture. The substrates used in the experiment were perlite, vermiculite, and peatmoss. Tomato plants were treated with different concentrations of nutrient solution, viz. 0.5, 1.0, 2.0, 3.0, and 5.0mS/cm at seedling stage and transferred to different treatments, 1.0, 2.0, and 3.0mS/cm after transplanting in each substrate. As the concentrations of nutrient solution increased from 0.5 to 3.0mS/cm at seedling stage, the $CO_2$ assimilation rates of seedlings increased in all three substrate culture. Beyond this range, the $CO_2$ assimilation rates of seedlings decreased. By increasing the concentrations of nutrient solution, plant height, leaf length, leaf width, stem diameter, and top dry weight increased in perlite and were high at 2-5mS/cm in vermiculite. On the other hand, in peatmoss, the best result was shown at 3.0mS/cm. Therefore, the adequate concentration of nutrient solution on early growth of seedlings differed among substrates and was shown to be 3.0-5.0mS/cm in perlite, 2.0-5.0mS/cm in vermiculite, and 3.0mS/cm in peatmoss. Generally, as the concentrations of nutrient solution increased from 1.0 to 3.0mS/cm after transplanting, dry weight increased significantly in all three substrate culture. However, dry weights of tomato plants grown under high concentration of 5.0mS/cm slightly increased both at seedling stage and after transplanting.

  • PDF

Design of ILS M&S for RAM Analysis in Guided Weapon System (유도무기체계 RAM분석을 위한 ILS M&S 설계)

  • Lee, Yong-Bin;Lee, Dong-Wook;Lee, Joo-Hyung;Um, Chun-Sup;Park, Jang-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.2
    • /
    • pp.19-29
    • /
    • 2015
  • M&S techniques are utilized for various purposes on the national defense, and its importance is increasing than ever. For analyzing RAM (Reliability, Availability and Maintainability) of weapon system, using M&S techniques can be more effective and practical way than deterministic approach, because M&S approach can consider uncertain variables and various constraints in the ILS (Integrated Logistics support) field. For design of ILS M&S, we first set up a purpose of M&S, attributes of real system and other similar ILS M&S tool. Then, we convert real system into model which consists of mathematical formula and logical expression. In this thesis, we introduce modeling procedures of M&S that describes total life cycle of 'OO guided weapon system' and the contents proposed in this paper can provide references for developing other M&S tool.

Near-surface P- and S-wave Velocity Structures in the Vicinity of the Cheongcheon Dam (청천댐 주변의 천부 P파 및 S파 속도구조)

  • Park, Yeong Hwan;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.109-118
    • /
    • 2013
  • On and near the 23-m high earthen Cheongcheon dam in Boryeong City, Korea, short seismic refraction and surface-wave profiles were conducted using a 5-kg sledgehammer. From vertical and horizontal components of the seismic waves, near-surface P-wave velocities (${\nu}_p$) and S-wave velocities (${\nu}_s$) were derived by inverting first-arrival refraction times and dispersion curves of Rayleigh waves. Average ${\nu}_p$ and ${\nu}_s$ for the Jurassic sedimentary basement were determined to be 1650 and 950 m/s at a depth of 30 m directly beneath the dam and 1650 m/s and 940 m/s at a depth of 10 m at the toe of the dam, respectively. The dynamic Poisson's ratio for these strata were therefore in the range of 0.24 to 0.25, which is consistent with ratios for consolidated sedimentary strata. Near a 45-m borehole 152 m downstream from the dam crest, an SH tomogram indicates a refraction boundary with an average ${\nu}_s$ of 870 m/s at depths of 10 ~ 12 m. At this site, the overburden comprises the upper layer with relatively constant ${\nu}_p$ and ${\nu}_s$ around 500 and 200 m/s, respectively, and the lower layer in which both ${\nu}_p$ and ${\nu}_s$ increase with depth almost linearly. The dynamic Poisson's ratios for the overburden were in the range of 0.30 to 0.43.

Increase of Downstream Minimum Flow Followed by Increase of Water Storage Size in Yudeungcheon Upstream (유등천 수원확보 규모와 하류 하천유지유량의 상관성)

  • Noh, Jae-Kyoung;Kim, Yong-Kuk;Lee, Jae-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.285-293
    • /
    • 2010
  • To secure instream flow at the Yudeung urban stream reach of Daejeon city in South Korea, Yudeung upstream diversion was designed with total water storage of $59{\times}10^4m^3$, and the upstream Seongol reservoir was planned to raise the bank with various sizes. Downstream streamflows were simulated by considering outflows from upstream diversion and reservoir, and after then flow durations were analyzed and compared with flows of no reservoir condition. In case of no diversion or reservoir upstream, flow durations were $1^{st}$ flow of $84.72m^3/s$, $95^{th}$ flow of $2.10m^3/s$, $185^{th}$ flow of $0.92m^3/s$, $275^{th}$ flow of $0.42m^3/s$, and $355^{th}$ flow of $0.31m^3/s$. In case of upstream diversion, flow durations were $1^{st}$ flow of $94.38m^3/s$, $95^{th}$ flow of $2.96m^3/s$, $185^{th}$ flow of $1.22m^3/s$, $275^{th}$ flow of $0.50m^3/s$, and $355^{th}$ flow of $0.35m^3/s$. The increase flow rates were $0.04m^3/s$ in $355^{th}$ flow, $0.08m^3/s$ in $275^{th}$, and $0.30m^3/s$ in 185th. In case of Seongol reservoir with effective storage capacities of $365{\times}10^4m^3$, $544{\times}10^4m^3$, $750{\times}10^4m^3$, and $992{\times}10^4m^3$, flow durations were $85.5{\sim}83.9m^3/s$ on $1^{st}$ flow, $2.85{\sim}2.57m^3/s$ on $95^{th}$ flow, $1.16{\sim}1.27m^3/s$ on $185^{th}$ flow, $0.64{\sim}0.99m^3/s$ on $275^{th}$ flow, and $0.56{\sim}0.94m^3/s$ on $355^{th}$ flow. The increase flow rates were $0.25{\sim}0.63m^3/s$ in $355^{th}$ flow, $0.22{\sim}0.57m^3/s$ in $275^{th}$, and $0.24{\sim}0.35m^3/s$ in $185^{th}$. The more the sizes of upstream reservoirs increased, the $1^{st}$ and $95^{th}$ flows decreased in which coefficients of determination were 0.92, 0.99, respectively and the $185^{th}$, $275^{th}$, and $355^{th}$ flows increased in which coefficients of determination were 0.93 to 0.99.