• Title/Summary/Keyword: M. trichosporium OB3b

Search Result 11, Processing Time 0.02 seconds

Growth Rate and Yield of a Methanotrophic Bacterium Methylosinus Trichosporium OB3b : I. Experimental Measurements (메탄자화균 Methylosinus trichosporium OB3b의 성장 속도와 수율 : I. 실험적 고찰)

  • 황재웅;송효학;박성훈
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.391-398
    • /
    • 1998
  • The effect of culture medium copper availability on the specific growth rate(${\mu}$) and carbon conversion efficiency (CCE) was sutided for an obligatory methanotroph Methylosinus trichosporium OB3b under various combinations of carbon and nitrogen sources. Methane or methanol was used as a carbon source, and nitrate or ammonium was used as a nitrogen source. Medium copper availability determined the intracellular location or kind of methane monooxygenase (MMO), cell-membrane (particulate or pMMO) when copper was present and cytoplasm (soluble or sMMO) when copper was deficient. When methane was used as a carbon source, copper-containing medium exhibited higher ${\mu}$ and CCE than copper-free medium regardless of the kind of nitrogen source. When methanol was used as a carbon source, however, the effect of copper disappeared. Ammonium gave the higher ${\mu}$ and CCE than nitrate for both methane and methanol. Those observation suggest that there exist an important difference in energy utilization efficiency for methane assimilation between sMMO and pMMO.

  • PDF

Batch Conversion of Methane to Methanol Using Methylosinus trichosporium OB3b as Biocatalyst

  • Hwang, In Yeub;Hur, Dong Hoon;Lee, Jae Hoon;Park, Chang-Ho;Chang, In Seop;Lee, Jin Won;Lee, Eun Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.375-380
    • /
    • 2015
  • Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30℃. The optimal concentrations of various methanol dehydrogenase inhibitors such as potassium phosphate and EDTA were determined to be 100 and 0.5 mM, respectively, for an efficient production of methanol. Sodium formate (40 mM) as a reducing power source was added to enhance the conversion efficiency. A productivity of 49.0 mg/l·h, titer of 0.393 g methanol/l, and conversion of 73.8% (mol methanol/mol methane) were obtained under the optimized batch condition.

Production of Methanol by Resting Cells of Methylosinus trichosporium OB3b (Methylosinus trichosporium OB3b를 이용한 메탄올의 생산)

  • 박성훈;추석열
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.341-350
    • /
    • 1993
  • As an effort to develop an alternative transportation fuel, the production of methanol from methane gas was studied using the resting cells of an obligatory methanotroph, Methylosinus trichosporium OB3b. The reaction was carried out in high concentration phosphate buffer solutions with the flask-grown cells containing the exclusively cytoplasmic methane monooxygenase (sMMO) activity. The methanol accumulation rate was observed to be 79nmo1/mg·min during the initial 4.5hr. Phosphate-dependent inhibition was found for both sMMO and methanol dehydrogenase (MDH) activities, and the inhibition constants were 185mM and 42mM, respectively. The inhibition mode was noncompetitive. Methanol was found to be very inhibitory to the sMMO activity and the inhibition constant (noncompetitive) was 21mM when propylene was used as substrate. The sMO activity in the resting cells was declined very fast and the rate became very high during the methanol production. These results indicate that the use of M. trichosporium OB3b as a biocatalyst for the methanol production is heavily dependent on the stable maintenance of the whole-cell SMO activity as well as the effective alleviation of product inhibition.

  • PDF

Evaluation of Transformation Capacity for Degradation of Ethylene Chlorides by Methylosinus trichosporium OB3b

  • Lee, Eun-Yeol;Kang, Jung-Mee;Park, Sung-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.5
    • /
    • pp.309-312
    • /
    • 2003
  • The transformation capacity (T$\_$c/) of Methylosinus trichosporium OB3b in the degradation of ethylene chlorides was determined by measuring the decrease of soluble methane monooxygenase (sMMO) activity of resting cells in batch experiments. All measurements of sMMO activity were taken in the presence of 20 mM formate to avoid the deficiency of reducing power, and within 2 hrs to avoid the effect of natural inactivation from instability of the resting cells. The constant T$\_$c/ values of 0.58 ${\pm}$ 0.132 and 0.80 ${\pm}$ 0.17 ${\mu}$mol/mg cell were obtained for trichloroethylene (TCE) and 1,2-dichloroethylene (cis and trans-1,2-DCE), respectively, regardless of their concentrations. The transformation capacity measured by this method can be used to predict the amount of cells that should be stimulated in in-situ bioremediation.

Production of propylene oxide from propene by a methanotroph, Methylosinus trichosporium OB3b (Methane 자화성 세균 Methylosinus trichosporium OB3b에 의한 propene으로부터 propylene oxide의 생산)

  • Chung, Dae-Seok;Peck, Un-Hwa;Bang, Wong-Gi
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.386-392
    • /
    • 1991
  • Whole cells of Methylosinus trichosporium OB3b, the obligate methylotroph, were used to produce propylene oxide from propane. This strain has methane monooxygenase, which catalyzes the conversion methane to methanol and can catalyze also the conversion propane to propylene oxide. Optimal condition for the production of propylene oxide was investigated in resting-whole cell system. The optimal pH and temperature was 7.0 and $35^{\circ}C$ respectively. The end product, propylene oxide, didn't inhibit the production of propylene oxide and was not further metabolized in reaction mixture. The addition of methane metabolites (methanol, formaldehde and formic acid) to the reaction mixture stimulated formation of propylene oxide by $3{\sim}4$ times, and methanol was the most effective especially. Under the optimal conditions, the 14.2 mM of propylene oxide was produced after incubation of 60 min. and the conversion ratio of propane to propylene oxide was approximately 8%.

  • PDF

Gas-phase TCE Degradation in a Two-stage CSTR/TBR System Using Methylosinus trichosporium OB3b (Methylosinus trichosporium OB3b를 이용한 2단계 CSTR/살수층 생물막 반응기에서 기상의 trichloroethylene(TCE) 분해)

  • Choe, Yeong-Beom;Lee, Eun-Yeol;Park, Seong-Hun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.452-459
    • /
    • 1999
  • A two-stage continuous stirred tank reactor (CSTR)/trickling biofilter reactor (TBR) system was developed for the degradation of gas-phase trichloroethlene (TCE) using Methylosinus trichoporium OB3b. Mrthylosinus trichosporium OB3b was immobilized on activated carbons in TBR and the microbial growth reactor of a CSTR was coupled for the reactivation of the deactivated cells during TCE degradation. The effect of operation variables on TCE conversion and degradation rate were studied. At inlet TCE concentrations ranging from 10 to 80 $\mu$mol/L, TCE degradation rate was increased up to 525 mg TCE/Lㆍday with 75% conversion. The TCE degradation rates were also increased with increse in broth recycle flow rate, gas flow rate and dilution rate. When the temperature of TBR was changed from 3$0^{\circ}C$ to 15$^{\circ}C$, TCE degradation rate and TCE conversion were increased due to the enhanced TCE transfer from gas-phase. The two-stage reactor system was found to be stable and has been operated for more than 270 days.

  • PDF

Bioconversion of methane to methanol using Methylosinus trichosporium OB3b in the repeated batch reaction system

  • Lee, Sang-Gwi;Kim, Hui-Gon;Kim, Jin-Gwon;Lee, Jung-Heon;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.116-120
    • /
    • 2003
  • Type strain, Methylosinus trichosporium OB3b, was used to convert methane to methanol. To prevent further oxidation of methanol, NaCl and EDTA were used as inhibitors of methanol dehydrogenase. The reaction temperature was $25^{\circ}C$, and the concentrations of cell and sodium formate added to the reaction mixture were 0.6 mg dry cell wt/ml and 20 mM, respectively. During 12hr reaction, 8 mM methanol was accumulated in the reaction mixture. In this reaction $K_m$ and $V_{max}$ values were found to be 532.6 mM and 1.749 mmol/hr, respectively, and the conversion rate was approximately 37%. To increase the concentration of methanol in the medium, a repeated batch reaction was carried out. In this process, methane was injected every eight hours, and the produced methanol concentration was 18 mM.

  • PDF

Growth of an Obligatory Methanotroph Methylosinus trichosporium OB3b on Methanol (메탄자화균 Methylosinus trichosporium OB3b의 메탄올 기질에서의 성장)

  • 강문선;황재웅박성훈
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.212-220
    • /
    • 1995
  • An obligatory type II methanotroph Methylosinus trichosporium OB3b was cultivated on methanol as a sole carbon and energy source. The effects of methanol concentration, pH, temperature, nitrogen source and phosphate concentration on cell growth were investigated and the results were compared with the growth on methane, which had been studied previously. When $(NH_4)_2SO_4$ was used as a nitrogen source, the maximal specific growth rate (${\mu}max$) on methanol was $0.20hr^{-1}$ and the carbon conversion efficiency(CCE) was 43%. In comparison, on methane, ${\mu}max$ and CCE were $0.08hr^{-1}$ and 32%, respectively. Ammonia was found to be a better nitrogen source for methanol-growing cells. Cell yield on nitrogen (YX/N) was the same regardless of nitrogen source as 7.14g dry cells/g N, but the yield on methanol(YX/N) was higher with ammonia(0.8g dry cells/g MeOH) than with nitrate(0.64g dry cells/g MeOH). Optimal pH and temperature were 7.0 and $30^{\circ}C$, respectively. Methanol inhibition on cell growth was observed at above 0.5%(v/v). Inhibition by phosphate was observed at above 60mM, although the inhibition on methanol dehydrogenase activity started at a much lower level of 20mM. Based on the experimental findings, the cellular physiology of M. trichosporium OB3b growing on the two closely-related carbon sources were discussed extensively.

  • PDF

Production of poly-$\beta$-hydroxybutyric acid(PHB) from Liquefied Natural Gas using an Obligatory Methanotroph Methylosinus trichosporium OB3b (메탄자화균 Methylosinus trichosporium OB3b를 이용한 액화 천연가스로부터 poly-$\beta$-hydroxybutyric acid(PHB)의 생산)

  • 황재웅;박성훈
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.246-253
    • /
    • 1996
  • An obligatory methanotroph Methylosinus trichosporium OB3b was cultivated for the production of poly-${\beta}$-hydroxybutyric acid(PHB) in shake-flask using liquefied natural gas(LNG) as the sole source of carbon and energy. The maximal specific growth rate decreased by 40% using LNG compared with that obtained with pure methane. This is attributed to the inhibition by ethane and propane presents in the LNG as impurities. For the production of PHB, two-stage culture separating the production stage from the growth stage was carried out. PHB accumulation was observed after switching nutrient-sufficient to nutrient-limited condition of non-carboneous component (NO3-, PO43-, K+, Na+, Fe2+, or Mg2+). The limitation of K+ or Mg2+ resulted in relatively high PHB content, but the highest content was obtained by nitrate limitation. The optimal pH and temperature for PHB accumulation was 7.0 and $30^{\circ}C$. Under the optimal condition the maximal PHB content was about 45% after 4-day cultivation.

  • PDF

Studies on Methanol Production from Methane by Methylosinus trichosporium (Methylosinus trichosporium을 이용한 메탄으로부터 메탄올 생성에 관한 연구)

  • 강환구
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.642-648
    • /
    • 1996
  • The effects of EDTA(Ethylene diamine tetraacetic acid), Cu, temperature, and gas(methane and oxygen) composition on methanol production from methane with Methylosinus trichosporium were investigated. In this experiment EDTA was found to be a potential methanol dehydrogenase inhibitor since it causes methanol accumulation and 6mM was found to be optimum concentration of EDTA for methanol production. When Cu was added in culture media, the produced methanol concentration level was increased. Hence it is believed that Cu enhanced the particulate methane monooxygenase formation and consequently the addition of Cu could increase the methanol production from methane. In this experiment the optimum concentration of Cu was found to be 1mM for methanol production. When temperature was shifted down from $30^{\circ}C to 25^{\circ}C$, the methanol production level was enhanced by 50%. When the ratio of methane to oxygen in gas phase was increased to 2.3 from 1, produced methanol concentration was also enhanced by 100%.

  • PDF