• Title/Summary/Keyword: M. sativa

Search Result 371, Processing Time 0.024 seconds

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

Effects of Concentrated Pig Slurry Separated from Membrane Filter and Several Environment-Friendly Agro-Materials Mixtures on the Growth and Yield of Lettuce (Lactuca sativa L.) in Hydroponics (막분리 돈분농축액비와 몇가지 친환경농자재의 혼합액이 수경재배에서 상추의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • This experiment was conducted to investigate the effects of concentrated pig slurry separated from membrane filter and by environment-friendly agro-materials mixtures on growth of lettuce in hydroponics. The swine waste treatment system having a ultra filtration and a reverse osmosis process was designed in this study. Filtration of pig slurry was necessary to prevent the hose clogging in hydroponics. Primary separation using ultra filter was followed by concentration by RO (Reverse Osmosis). The concentrated pig slurry (CS) was mixed by five different environment-friendly agro-materials mixtures. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of lettuce. The concentration of nutrient solution in hydroponics was adjusted a range of 1.5 mS/cm in EC. The concentrated pig slurry was low in phosphorus(P), suspended solid and heavy matal, but rich in potassium (K). The concentrated slurry was lowest in the growth characteristics of leaf lettuce. And also SPAD value in leaf was reduced in plot treated with concentrated slurry. But the growth of lettuce in the mixtures plot (CS+BM+AA, CS+BM+AA+SW) in hydroponics was significantly high compared to concentrated slurry. The fresh yield of lettuce was 78, 84% that of nutrient solution as 131.9, 142.2g in plot of CS+BM+AA and CS+BM+AA+SW, respectively. Our studies have shown that it is possible to produce organic culture using concentrated slurry and environment-friendly agro-materials mixture, although growth is slower than when using a conventional inorganic hydroponic solution.

Efficient Plant Regeneration from Alfalfa Callus by Osmotic Stress Treatment (알팔파 캘러스로부터 삼투압 스트레스 처리에 의한 효율적인 식물체 재분화)

  • Kim, J.S.;Lee, D.G.;Lee, S.H.;Woo, H.S.;Lee, B.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.879-886
    • /
    • 2004
  • Effects of culture mediwn supplements and osmotic stress treatment on embryogenic callus induction and somatic embryogenesis were investigated in order to optimize tissue culture conditions of alfalfa(Medicago sativa L.). SH mediwn containing 5mgIL 2,4-D and 0.2mgIL kinetin was optimal for embryogenic callus induction from cotyledon tissue of alfalfa. Somatic embryos were formed when the embryogenic callus was cultured on SH mediwn supplemented with ImgIL 2,4-D and 2mgIL BA. Supplementation of 5mM L-proline and IgIL casein hydrolysate into the regeneration mediwn further increased plant regeneration frequency. Osmotic stress treatment of callus appeared to improve the frequency of somatic embryo formation, but the frequency of somatic embryo formation differed by the osmotic stress treatment using different osmotic stressors. The highest plant regeneration frequency of 30.7% was observed when embryogenic callus was treated with 0.7M sucrose for 18h. Efficient regeneration system established in this study will be useful for molecular breeding of alfalfa through genetic transformation.

A Study of Mode of Action of Alachlor III. Effect of Alachlor on Cell Division, Cell Kinetics, Cell Elongation, and Cell Differentiation in Oat (Avena sativa L.) (Alachlor의 제초기구(除草機構)에 관(關)한 연구(硏究) III. Alachlor가 귀리의 세포분열(細胞分裂), Cell kinetics, 세포신장(細胞伸長) 및 분화(分化)에 미치는 영향(影響))

  • Kwon, S.W.;Kim, J.C.
    • Korean Journal of Weed Science
    • /
    • v.12 no.2
    • /
    • pp.102-109
    • /
    • 1992
  • There was significant reduction in the mitotic indices of oat roots treated with alachlor. Uniform decrease in prophase, metaphase, anaphase, and telophase as treatment time increasing was observed. Alachlor did not disrupt mitosis, but rather inhibited the onset of mitosis. Labeled dividing cells were significantly inhibited, but the number of labeled interphase cells of all treatment were increased, as compared with control in 8 hr and 12hr period. Labeled dividing cells which entered mitosis thru $G_2$ were inhibited approximately 68% at 8hr after treatment with $1{\times}10^{-5}$ M of alachlor. Alachlor apparently inhibited from the $G_2$stage into mitosis of dividing cells. After 24 hr treatment, 12.1% abd 46.6% inhibition of coleoptile growth occurred at $1{\times}10^{-5}$ M and $1{\times}10^{-4}$ M, respectively. Cell elongation was inhibited by alachlor but was less sensitive than cell division. The longitudinal section cells of oat roots treated with $1{\times}10^{-4}$ M alachlor for 12 hr were observed to be enlarged central cylinder and also showed degradation of apical meristem zone, as compared with the untreated roots.

  • PDF

A Routine System for Generation of Fertile Transgenic Rice Plants Using Biolistic Method

  • Lee Soo-In;Kim Cha-Young;Lim Chae-Oh;Choi Young-Ju;Kim Ho-Il;Lee Sang-Yeol;Lee Sung-Ho
    • Journal of Plant Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.163-168
    • /
    • 2003
  • A routine system based on particle bombardment of embryogenic callus for recovery of fertile transgenic rice (Oryza sativa L.) plants was developed. Embryogenic callus was established within 2-3 months from calli derived from mature seeds of Korean rice cultivar, Nagdongbyeo. The callus was bombarded with the plasmid pRQ6 containing the $\beta$-glucuronidase gene (gusA) and hygromycin phosphotransferase gene (hph, conferring resistance to hygromycin B), both driven by CaMV 35S promoter. Placement of cells on an osmoticum-containing medium (0.2 M sorbitol and 0.2 M mannitol) 4 hrs prior to and 16 hrs after bombardment resulted in a statistically significant increase with 3.2-fold in transient expression frequency gusA. In five independent experiments, the average frequency of transformation showing GUS activities was $8.86\%$. A large number of morphologically normal, fertile transgenic rice plants were obtained. Integration of foreign gene into the genome of $R_0$ transgenic plants was confirmed by Southern blot analysis. GUS and HPT were detected in $R_1$ progeny and Mendelian segregation of these genes was observed in $R_1$ progeny.

Effect of Cyclosulfamuron on Rice Growth and Acetolactate Synthase Activity (Cyclosulfamuron이 벼의 생육과 Acetolactate Synthase 활성에 미치는 영향)

  • Ji, Seung-Hwan;Song, Sung-Do;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • Cyclosulfamuron a herbicide of sulfonylurea type, is a relatively new compound which control broad leaves and perennial weeds in rice field. However, this herbicide has a minor disadvantage of decreasing rice plant growth, especially in early growth stage. Therefore, far introducing this cyclosulfamuron as a herbicide in rice field, it is important to minimize the suppression of early plant growth with maintaining weed control efficacy. This study was conducted to evaluate effects of cyclosulfamuron early plant growth and acetolactate synthase activity of rice (Oryza sativa cv Dongjinbyeo, Hwasungbyeo, Ilpumbyeo). Rice growth was inhibited by cyclosulfamuron in their early growth stage. The concentrations required far 50% inhibition of Dongjinbyeo, Hwasungbyeo and Ilpumbyeo growth were 6.3, 9.2 and 146.mg/kg, respectively. Inhibition effect of cyclosulfamuron on the root elongation was greater than the effect on the shoot growth. Concentrations required far 50% inhibition of acetolactate synthase activity from Dongjinbyeo, Hwasungbyeo, Ilpumbyeo were 42.7, 32.7 and $56.7\;{\mu}M$, respectively.

An Electron-Microscopical Study of Cellulase Activity on Germinating Endosperm of Cannabis saiva L. (발아중인 대마 배유조직의 Cellulase 활동에 관한 전자현미경적 연구)

  • Kim, Young-Hee;Kim, Eun-Soo
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.67-77
    • /
    • 1994
  • Storage material of endosperm cells digested by various enzymes should be transported to the embryo. At this time, the cellulose of the endosperm cell wall is guessed to be hydrolyzed by the cellulase enabling to transfer the storage material from the endosperm cells to the embryo. Therefore, this study has been carried out to investigate the ultrastructure of endosperm and the localization of the cellase activity on Cannabis sativa L. during germination. Endosperm cells contain a large number of lipid bodies and protein bodies with globoids as the storage material. During gemination they are gradually degenerated, however, the former almost remain until the cells are completely digested. Electron-microscopical reaction products of cellulase on endosperm cells are present. The closer the embryo, the more amount of reaction products on the endosperm cell wall are appeared.

  • PDF

Managing Soil Organic Matter and Salinity by Crop Cultivation in Saemangeum Reclaimed Tidal Land

  • Bae, Hui Su;Jang, Hyeonsoo;Hwang, Jae Bok;Park, Tae Seon;Lee, Kyo Suk;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • This study was to evaluate the effect of organic amendments incorporation on soil properties and plant growth under two different soil salinity levels and various cultivated crops at Saemangeum reclaimed tidal land for three years from 2012 to 2014. The soil texture of the experimental site was sandy loam. Four different crops, sesbania (Sesbania grandiflora), sorghum-sudangrass hybrid (Sorghum bicolor-Sorghum sudanense), rice (Oryza sativa L.) and barley (Hordeum vulgare) were cultivated at low (< $1dS\;m^{-1}$) and high (> $4dS\;m^{-1}$) soil salinity levels. The soil salinity was significantly lowered at the rice cultivation site compared to continuous upland crops cultivation site in high soil salinity level. But the soil salinity was increased as cultivating sesbania coutinuously in low soil salinity level. The soil organic matter content was increased with the incorporation of straw at the continuous site of rice and barley, and the average of soil organic matter was increased by $0.9g\;kg^{-1}$ per year which was effective in soil aggregate formation. The highest biomass yield plot was found in barley (high salinity level) and sesbania (low salinity level) cultivation site, respectively. Our research indicates that rice cultivation in paddy field with high salinity level was effective in lowering soil salinity and sesbania cultivation was useful to biomass production at upland with low salinity. In conclusion, soil salinity and organic matter content should be considered for multiple land use in newly reclaimed tidal land.

Identification of Biologically Active Substances from Lilac(Syringa vulgaris L.) (라일락 잎에 함유된 생리활성물질의 동정)

  • Hwang, S.J.;Shin, D.H.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.17 no.3
    • /
    • pp.334-344
    • /
    • 1997
  • Inhibitory substance in the water extracts from lilac(Syringa vulgaris) leaves was determined in terms of the allelopathic chemicals. The water extracts from S. vulgaris leaves inhibited the germination and root growth of Digitaria sanguinalis and L. sativa, indicating that a biological substances are presented in the lilac leaves. The phenolic acids were separated and tentatively identified from S. vulgaris leaves by gas chromatography and there were composed of higher contents of p-coumaric acid, salicylic acid, pyrogallol, and catechol. Polyphenolic compounds such as rutin (5.3%), scopoletin (3.3%), kaempferol (2.9%), and other polyphenolic compotmds were detected from lilac leaves. The mixtures of $10^{-6}M$ of pyrogallol with all the concentrations of catechol had high inhibition of the shoot growth on D. sanguinalis and E. crus-galli regardless of the catechol concentrations.

  • PDF

Modified Drum Priming and Exogenous Application of 24-Epibrassinolide (24-EBL) for Enhancing Germination under High Temperature Condition in Lettuce Seeds

  • Kang, Won Sik;Kim, Min Geun;Kim, Du Hyun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.86-86
    • /
    • 2018
  • This study was conducted to investigate the effects of modified drum priming and 24-Epibrassinolide (24-EBL) treatment to improve the seed quality for export. 40, 50 and 60% seed moisture content (SMC) of hydrated seeds were incubated for 16 and 24 h in a container with a relative humidity of 99% at 26 rpm for a modified drum priming treatment. The treated seeds were sown at $20^{\circ}C$ and $30^{\circ}C$ (12/12h, light/dark) with four replications of 25 seeds on pleated paper. The seeds were hydrated with water or 24-EBL solutions of $10^{-7}$, $10^{-8}$ and $10^{-9}M$, respectively. The germination of the modified drum primed seeds (24 h incubation after 60% SMC hydration) improved to 1.6 days mean germination time (MGT) and $46%{\cdot}day^{-1}$ germination rate (GR), while the untreated seeds showed 2.1 days MGT and $28%{\cdot}day^{-1}$ GR. The modified drum priming (60% SMC and 24 h incubation with $10^{-9}M$ 24-EBL) showed improved results in MGT (1.8 days) and GR (55%) at $20^{\circ}C$, whereas untreated seeds showed 2.3 days MGT and 44% GR. Under $30^{\circ}C$, germination of modified drum primed seeds was significantly improved in GP (80%), GR ($31%{\cdot}day^{-1}$), HS (55%) and MGT (3.3 days), however, untreated seeds showed decreased GP (27%), GR ($22%{\cdot}day^{-1}$), HS (55%) and MGT (4.8 days). This study showed that the germination of lettuce seeds is enhanced by 24 h drum incubation with 24-EBL and this method can be used effectively to achieve the benefits of early germination and uniform seedling development. In addition, these treatments circumvent thermo-dormancy of lettuce seed and have a possibility of high-quality and environment-friendly seed processing.

  • PDF