• Title/Summary/Keyword: M-pass

Search Result 736, Processing Time 0.03 seconds

Process Design of Multi-Pass Shape Rolling for Manufacturing Piston Ring Wire (피스톤 링 제조용 선재의 다단 형상 압연공정 설계)

  • Kim, N.J.;Lee, K.H.;Lim, S.H.;Lee, J.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • Multi-pass shape rolling is performed to produce long products of arbitrary cross-sectional shapes. In the past, the multi-pass shape rolling process has been designed by the trial and error method or the experience of experts based on the empirical approach. Particularly, the design of roll caliber in shape rolling is important to improve product quality and dimensional accuracy. In this paper, the caliber design and pass schedule of multi-pass shape rolling were proposed for manufacturing piston ring wire. In order to design roll caliber, major shape parameter and dimension was determined by analysis of various caliber design. FE-simulation was conducted to verify effectiveness of proposed process design. At first, forming simulation was performed to predict shape of the product. Then, fracture of the wire was evaluated by critical damage value using normalized Cockcroft-Latham criteria. The experiment was carried out and the results are within the allowable tolerance.

Characteristics of a tunable optical fiber drop/pass filter (파장 가변 가능한 광섬유 drop/pass필터의 특성 분석)

  • 박광로;조상연;이영탁;이경식;원용협
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.20-26
    • /
    • 1997
  • In this paper, we propose a tunable drop/pass filter in the form of composed of Mach-Zehnder interferometer, to which a fiber grating and two PZTs are attached. The proposed drop/pass filter drops a part of signal power at a specific wavelength and pass the remnant of the signal to the next node in WDM network. Our simulation results show that the optical feedback is less than 2% and the drop to pass ratio can be made bigger than 10% if the phase difference between the two arms is within .+-.0.2.pi. from (2m+1).pi.. Also, the output powers at drop prot and pass port are measured to be maximum at the phase difference of .pi./2 and .pi., respectively, as expected.

  • PDF

Improvement of 2-pass DInSAR-based DEM Generation Method from TanDEM-X bistatic SAR Images (TanDEM-X bistatic SAR 영상의 2-pass 위성영상레이더 차분간섭기법 기반 수치표고모델 생성 방법 개선)

  • Chae, Sung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.847-860
    • /
    • 2020
  • The 2-pass DInSAR (Differential Interferometric SAR) processing steps for DEM generation consist of the co-registration of SAR image pair, interferogram generation, phase unwrapping, calculation of DEM errors, and geocoding, etc. It requires complicated steps, and the accuracy of data processing at each step affects the performance of the finally generated DEM. In this study, we developed an improved method for enhancing the performance of the DEM generation method based on the 2-pass DInSAR technique of TanDEM-X bistatic SAR images was developed. The developed DEM generation method is a method that can significantly reduce both the DEM error in the unwrapped phase image and that may occur during geocoding step. The performance analysis of the developed algorithm was performed by comparing the vertical accuracy (Root Mean Square Error, RMSE) between the existing method and the newly proposed method using the ground control point (GCP) generated from GPS survey. The vertical accuracy of the DInSAR-based DEM generated without correction for the unwrapped phase error and geocoding error is 39.617 m. However, the vertical accuracy of the DEM generated through the proposed method is 2.346 m. It was confirmed that the DEM accuracy was improved through the proposed correction method. Through the proposed 2-pass DInSAR-based DEM generation method, the SRTM DEM error observed by DInSAR was compensated for the SRTM 30 m DEM (vertical accuracy 5.567 m) used as a reference. Through this, it was possible to finally create a DEM with improved spatial resolution of about 5 times and vertical accuracy of about 2.4 times. In addition, the spatial resolution of the DEM generated through the proposed method was matched with the SRTM 30 m DEM and the TanDEM-X 90m DEM, and the vertical accuracy was compared. As a result, it was confirmed that the vertical accuracy was improved by about 1.7 and 1.6 times, respectively, and more accurate DEM generation was possible with the proposed method. If the method derived in this study is used to continuously update the DEM for regions with frequent morphological changes, it will be possible to update the DEM effectively in a short time at low cost.

Turbulence-tolerant Manchester On-off Keying Transmission for Free-space Optical Communication

  • Qian-Wen Jing;Pei-Zheng Yu;Han-Lin Lv;Yanqing Hong
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.345-353
    • /
    • 2023
  • We propose a turbulence-tolerant Manchester on-off keying (M-OOK) transmission for free-space optical (FSO) communication. At the transmitter end, a M-OOK signal featuring a spectrum with low-frequency components absent is modulated and transmitted into a turbulent channel. At the receiver end, a low-pass filter (LPF) -based adaptive-threshold decision (ATD) with LPF-extracted channel-state information (CSI) and a high-pass filter (HPF)-based fixed-threshold decision (FTD) are employed to compensate for the effects of turbulence, owing to the low-frequency spectral characteristics of the turbulent channel. The performance of LPF-based ATD and HPF-based FTD are evaluated for various cutoff frequencies for the LPF and HPF. Besides, the proposed M-OOK transmission is compared to conventional non-return-to-zero OOK (NRZ-OOK) for different data rates. The proposed technique is verified in simulation. The simulation results show that the proposed M-OOK detection with optimized cutoff frequencies of LPF and HPF has better bit-error-rate (BER) performance compared to NRZ-OOK, and it is close to the theoretical ATD with the knowledge of precise CSI under various degrees of turbulence effects.

Prediction of Surface Residual Stress of Multi-pass Drawn Steel Wire Using Numerical Analysis (수치해석을 이용한 탄소강 다단 신선 와이어 표면 잔류응력 예측)

  • Lee, S.B.;Lee, I.K.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2017
  • The tensile surface residual stress in the multi-pass drawn wire deteriorates the mechanical properties of the wire. Therefore, the evaluation of the residual stress is very important. Especially, the axial residual stress on the wire surface is the highest. Therefore, the objective of this study was to propose an axial surface residual stress prediction model of the multi-pass drawn steel wire. In order to achieve this objective, an elastoplastic finite element (FE) analysis was carried out to investigate the effect of semi-die angle and reduction ratio of the axial surface residual stress. By using the results of the FE analysis, a surface residual stress prediction model was proposed. In order to verify the effectiveness of the prediction model, the predicted residual stress was compared to that of a wire drawing experiment.

Optimization of Process Variables of Shape Drawing for Steering Spline Shaft (조향장치용 스플라인 샤프트 이형인발 공정변수 최적화)

  • Lee, S.K.;Kim, S.M.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • In the multi-pass shape drawing process, the appropriate process design is very important to produce sound products. The reduction ratio, die angle, and the intermediate die shape are very important process variable of the multi-pass shape drawing. The aim of this study is the determination of the reduction ratio, die angle, and the intermediate die shape of the 2 pass shape drawing process for producing steering spline shaft. In this study, FE analysis, Taguchi method, and ANN(artificial neural network) were applied to determine the appropriate reduction ratio, die angle, and intermediate die shape. After the determination of the process variables, FE analysis and drawing experiment were performed to evaluate the effectiveness of the determined process variables. The dimensional accuracy of the final drawn spline shaft was evaluated by using 3D surface profiler and 3D laser digitizing system.

A 24 GHz I/Q LO Generator for Heartbeat Measurement Radar System (심장박동 측정 레이더를 위한 24GHz I/Q LO 발생기)

  • Yang, Hee-Sung;Lee, Ockgoo;Nam, Ilku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.66-70
    • /
    • 2016
  • This paper presents an 24 GHz I/Q LO generator for a heartbeat measurement radar system. In order to improve the mismatch performance between I and Q LO signals against process variation, a 24 GHz I/Q LO generator employing a low-pass phase shifter and a high-pass phase shifter composed of inductors and capacitors is proposed. The proposed 24 GHz I/Q LO generator consists of an LO buffer, a low-pass phase shifter and a high-pass phase shifter. It was designed using a 65 nm CMOS technology and draws 8 mA from a 1 V supply voltage. The proposed 24 GHz I/Q LO generator shows a gain of 7.5 dB, a noise figure of 2.3 dB, 0.1 dB gain mismatch and $4.3^{\circ}$ phase mismatch between I and Q-path against process and temperature variations for the operating frequencies from 24.05 GHz to 24.25 GHz.

Pass Design of Drawing Process to Prevent Delamination (층간분리 방지를 위한 인발공정 패스설계)

  • Lee, S.K.;Ko, D.C.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.46-49
    • /
    • 2008
  • Drawing process of the high carbon steel wire with high speed is usually performed at room temperature using multi pass. Tn the multi pass drawing, temperature rise affects the mechanical properties of the final product. The excessive temperature rise during the deformation promotes the occurrence of delamination, and deteriorates the torsion property and durability of wire. This paper investigates the occurrence of delamination in the wire through the torsion test and the evaluation of wire temperature. The excessive wire temperature ieads to the occurrence of delamination. Based on the calculation of the wire temperature, a new pass schedule, that can prevent the delamination due to the excessive wire temperature rise, is designed through the isothermal pass schedule.

  • PDF

Single-Electron Pass-Transistor Logic with Multiple Tunnel Junctions and Its Hybrid Circuit with MOSFETs

  • Cho, Young-Kyun;Jeong, Yoon-Ha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.669-672
    • /
    • 2004
  • To improve the operation error caused by the thermal fluctuation of electrons, we propose a novel single-electron pass-transistor logic circuit employing a multiple-tunnel junction (MTJ) scheme and modulate a parameters of an MTJ single-electron tunneling device (SETD) such as the number of tunnel junctions, tunnel resistance, and voltage gain. The operation of a 3-MTJ inverter circuit is simulated at 15 K with parameters $C_g=C_T=C_{clk}=1\;aF,\;R_T=5\;M{\Omega},\;V_{clk}=40\;mV$, and $V_{in}=20\;mV$. Using the SETD/MOSFET hybrid circuit, the charge state output of the proposed MTJ-SETD logic is successfully translated to the voltage state logic.

  • PDF