• Title/Summary/Keyword: M-Wave

Search Result 2,884, Processing Time 0.031 seconds

Quality Enhancement of Wave Data Observed by Radar at the Socheongcho Ocean Research Station (소청초 종합해양과학기지 Radar 파랑 관측 데이터의 신뢰도 향상)

  • Min, Yongchim;Jeong, JinYong;Shim, Jae-Seol;Do, Kideok
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2017
  • Ocean Research Stations (ORSs) is the ocean platform type observation towers and measured oceanic, atmospheric and environmental data. These station located on the offshore area far from the coast, so they can produce the data without land effect. This study focused to improve the wave data quality of ORS station. The wave observations at ORSs are used by the C-band (5.8 GHz, 5.17 cm) MIROS Wave and Current Radar (MWR). MWR is convenient to maintenance and produce reliability wave data under bad weather conditions. MWR measured significant wave height, peak wave period, peak wave direction and 2D wave spectrum, so it's can provide wave information for researchers and engineers. In order to improve the reliability of MWR wave data, Datawell Waverider Buoy was installed near the one ORS (Socheoncho station) during 7 months and validate the wave data of MWR. This study found that the wave radar tend to be overestimate the low wave height under wind condition. Firstly, this study carried out the wave Quality Control (QC) using wind data, however the quality of wave data was limited. So, this study applied the four filters (Correlation Check, Direction Filter, Reduce White Noise and Phillips Check) of MWR operating software and find that the filters effectively improve the wave data quality. After applying 3 effective filters in combination, the RMSE of significant wave height decreased from 0.81m to 0.23m, by 0.58m and Correlation increased from 0.66 to 0.96, by 0.32, so the reliability of MWR significant wave height was significantly improved.

Design Wave Transformation in Finite Depth due to Wave-Current Interaction (파랑-해류 상호작용에 의한 천해 설계파랑 변형)

  • Kang, See-Whan;Ahn, Suk-Jin;Eom, Hyun-Min;Cho, Hyu-Sang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.308-315
    • /
    • 2009
  • Wave-current interaction due to strong ambient currents causes to alter wave properties such as wave height, wave profile and wave spectrum. In this study we first examined the SWAN model's applicability by comparing with an analytical solution of Suh et al. (1994) for wave-current interaction in finite water-depth. Numerical experiments using SWAN model have been conducted for Garolim Bay to estimate the design waveheights influenced by strong tidal currents. For the design wave periods of 8~10 sec, the design wave height of 3 m in NNW direction was increased by up to 40% when the incident waves encounter the opposing currents of 1.4 m/s while the wave height was reduced by 26% due to the following currents of 1.1 m at the bay mouth. This result indicates that the effect of wave-current interaction must be included to determine the design wave height if there exists a strong current.

Analysis on the Change of Wave Behaviour Due to Installation of Offshore Wind Turbine Foundations (해상풍력터빈 기초 구조물 설치로 인한 파랑거동 변화 검토)

  • Kim, Ji-Young;Kang, Keum-Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.306-315
    • /
    • 2010
  • As developing the large-scale offshore wind farm is expected, the preliminary environmental impact assessment is very essential. In this study, the wave hindcast model is verified based on observed data at the coast around Wido which is among the candidate sites for developing the offshore wind farm. In addition, the effect of the wind turbine foundations on wave height is analyzed when total 35 wind turbines including monopile foundations of 5 m in diameter are installed. Calculation result of significant wave height is in good accord with observed data since the RMS error is 0.35 m. Moreover, it is found that the presence of the wind turbine foundations hardly affects wave height as wave damping ratio is less than 1%.

Determination of Ratio of Wood Deterioration Using NDT Technique

  • Lee, Jun-Jae;Bae, Mun-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.33-41
    • /
    • 2004
  • In ancient wooden structures, the mechanical properties of the structural members have been reduced by time-dependent degradations such as fatigue or creep. Also, the external and internal deterioration was caused by environmental condition, fungi, bacteria, or insect, and then reduced the quality of structural members. However, the previous methods for evaluating the deterioration have been mainly depended on the visual inspection. In this study, therefore, ultrasonic stress wave test, accelerometer stress wave test were used to evaluate the deterioration of structural wood members in ancient wooden structures. Based on the results, the quantitative criteria of stress wave transmitted velocity were proposed to evaluate the deterioration of structural member. The proposed criteria were related to the degree of deterioration. In accelerometer stress wave, the criteria of deterioration of wave reciprocal velocity was below 1800 ㎲/m at incipient deterioration (below 12% ratio of deterioration), between 1800 and 2200 ㎲/m at moderate deterioration (12~17%) and above 2200 ㎲/m at severe deterioration (above 17%). The ultrasonic stress wave, the criteria of deterioration were 800 and 950 ㎲/m at below 8% and above 15% of the degree of deterioration respectively.

High Efficiency Q-band MIMIC HEMT-Oscillator Operating at Low Voltages (고효율 및 저전압 동작 특성의 Q-band MIMIC HEMT발진기)

  • Lee, Mun-Kyo;An, Dan;Lee, Bok-Hyung;Kim, Sung-Chan;Lim, Byeong-Ok;Han, Hyo-Jong;Chae, Yeon-Sik;Shin, Dong-Hoon;Kim, Yong-Hoh;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.4
    • /
    • pp.45-50
    • /
    • 2004
  • In this paper, we present the low voltage and high efficiency Q-band MIMIC oscillator using device-level power combined structure. The oscillator was successfully integrated by using 0.1 ${\mu}{\textrm}{m}$ GaAs PHEMTS and the CPW transmission line. We show that the highest efficiency is 19 % with an output power of 2.6 ㏈m at a frequency of 34.56 ㎓. The operating voltage of the oscillator is 2.2 V which is lower voltage than that of previously reported oscillators at Q-band. And the maximum output power of 6.7 ㏈m was obtained at a frequency of 34.56 ㎓.

The Effect of Partial Closure of the Duct Exit on the Impulsive Wave Impinging upon a Flat Plate (평판에 충돌하는 펄스파에 미치는 관출구 부분폐쇄의 영향)

  • Shin, Hyun-Dong;Lee, Young-Ki;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1595-1600
    • /
    • 2004
  • When a shock wave arrives at a duct, an impulsive wave is discharged from the duct exit and causes serious noise and vibration problems. In the current study, the characteristics of the impulsive wave discharged from a partial closed duct exit is numerically investigated using a CFD method. The Yee-Roe- Davis's total variation diminishing(TVD) scheme is used to solve the axisymmetric, unsteady, compressible Euler equations. With several partial closed duct exits, the Mach number of the incident shock wave $M_s$ and the distance L/D between the duct exit and a flat plate are varied in the range of $M_s$ = 1.01 ${\sim}$ 1.50 and L/D = 1.0 ${\sim}$ 4.0, respectively. The results obtained show that the magnitude of the impulsive wave impinging upon the flat plate strongly depends upon $M_s$, L/D and the partial closure of duct exit. The impulsive wave on the flat plate can be considerably alleviated by the partial closure of duct exit and, thus, the present method can be a passive control for the impulsive wave.

  • PDF

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (II) - Characteristics of extreme waves generated by Typhoon MAEMI in the south coast of Korea - (제3세대 파랑추산모형을 이용한 태풍 '매미'의 극한파랑 재현 (II) - 태풍 '매미'가 야기한 우리나라 남해안 일대의 극한파랑 특성 -)

  • Shin Seung-Ho;Hong Keyyong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.219-225
    • /
    • 2004
  • Following a preceding study if Shin et al.(2004), wave fields for a month if September if 2003 are simulated based on the modified WAM cycle 4 model that enables the precise wave hindcasting with fine spatial meshes, and characteristics of extreme waves at the south roast if Koreo are analyzed The accuracy if applied wave model is verified by comparing computed wave parameters and corresponding ones measured at Ieodo ocean research station. The wave hindasting if typhoon 'Maemi' with an hour time interval reveals the extreme wave characteristics at 4 primary locations if south coast of Korea as follows: 1) At the front sea of Chaguido in the south of Jeju-do, the maximum significant wave height, moon wave period and mean wave direction appear to be 7.41m, 13.65s and $6.4^{\circ}$, respectively at 16:00 KST if Sep. 12, 2003. 2) At the entrance of Masan Bay, 12.50m, 13.65s and $1.2^{\circ}$ at 21:00 KST if Sep. 12. 3) At the front sea of Suyoung Bay, 13.85m, 13.81s and $0.2^{\circ}$ at 22;00 KST if Sep. 12. 4) At the front sea of Ulsan port, 11.00m, 13.25s and $28^{\circ}$ at 23:00 KST if Sep.

  • PDF

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (II) - Characteristics of extreme waves generated by Typhoon MAEMI in the south coast of Korea - (제3세대 파랑추산모형을 이용한 태풍 ‘매미’의 극한파랑 재현 (II) - 태풍 ‘매미’가 야기한 우리나라 남해안 일대의 극한파랑 특성 -)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.745-751
    • /
    • 2004
  • Following a preceding study of Shin et al.(2004), wave fields for a month of September of 2003 are simulated based on the modified WAM cycle 4 model that enables the precise wave hindcasting with fine spatial meshes, and characteristics of extreme waves at the south coast of Korea are analyzed The accuracy of applied wave model is verified by comparing computed wave parameters and corresponding ones measured at Ieodo ocean research station. The wave hindcasting of typhoon 'Maemi' with an hour time interval reveals the extreme wave characteristics at 4 primary locations of south coast of Korea as follows: 1) At the front sea of Chaguido in the south of Jeju-do, the maximum significant wave height, mean wave period and mean wave direction appear to be 7.41m, 13.65s and $6.4^{\circ}$ respectively at 16:00 KST of Sep. 12, 2003. 2) At the entrance of Masan Bay, 12.50m, 13.65s and $1.2^{\circ}$ at 21:00 KST of Sep. 12. 3) At the front sea of Suyoung Bay, 13.85m, 13.81s and $0.2^{\circ}$ at 22;00 KST of Sep. 12. 4) At the front sea of Ulsan port, l1.00m, 13.25s and $2.8^{\circ}$ at 23:00 KST of Sep. 12.

Low Conversion Loss 94 GHz MHEMT MIMIC Resistive Mixer (낮은 변환손실 특성의 94 GHz MHEMT MIMIC Resistive 믹서)

  • An Dan;Lee Bok-Hyung;Lim Byeong-Ok;Lee Mun-Kyo;Oh Jung-Hun;Baek Yong-Hyun;Kim Sung-Chan;Park Jung-Dong;Shin Dong-Hoon;Park Hyung-Moo;Park Hyun-Chang;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.61-68
    • /
    • 2005
  • In this paper, low conversion loss 94 GHz MIMIC resistive mixer was designed and fabricated. The $0.1{\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT, which is applicable to MIMIC's, was fabricated. The DC characteristics of MHEMT are 665 mA/mm of drain current density, 691 mS/mm of maximum transconductance. The current gain cut-off frequency(fT) is 189 GHz and the maximum oscillation frequency(fmax) is 334 GHz. A 94 GHz resistive mixer was fabricated using $0.1{\mu}m$ MHEMT MIMIC process. From the measurement, the conversion loss of the 94 GHz resistive mixer was 8.2 dB at an LO power of 10 dBm. P1 dB(1 dB compression point) of input and output were 9 dBm and 0 dBm, respectively. LO-RF isolations of resistive mixer was obtained 15.6 dB at 94.03 GHz. We obtained in this study a lower conversion loss compared to some other resistive mixers in W-band frequencies.

A Study of the Impulse Wave Discharged from a Perforated Pipe (다공관으로부터 방출되는 펄스파에 관한 연구)

  • Shin Hyun Dong;Kweon Yong Hun;Kim Heuy Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • When a shock wave discharges from an open end of a duct, an impulse wave is generated outside the duct, causing serious noise and vibration problems. The magnitude of the impulse wave can be reduced by installing of a perforated duct. In the current study, the characteristics of the impulse wave discharged from the exit of a perforated duct are numerically investigated. A TVD (total variation diminishing) scheme is used to solve the unsteady, axisymmetric, compressible Euler equations. In computations, the porosity of a perforated pipe $(\sigma)$ and the Mach number of incident shock wave $(M_s)$ are varied in the range of $\sigma=0\~19\%\;and\;M_s=1.01\~1.50$, respectively. The results show that the directivity and magnitude of impulse wave strongly depend upon the Mach number of incident shock wave and the porosity of the perforated pipe. The present CFD results are in close agreement with experimental results.

  • PDF