• Title/Summary/Keyword: M-S manipulator

Search Result 44, Processing Time 0.037 seconds

Graphic Simulator of the Mechanical Master-Slave Manipulator (기계식 Master-Slave 조작기의 그래픽 시뮬레이터)

  • 이종열;송태길;김성현;홍동희;정재후;윤지섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.743-746
    • /
    • 1997
  • The Master-Slave manipulator is the generally used remote handling equipment in the hot cell, in which the high level radioactive materials such as spent fuels are handled. To analyze the motion and to implement the training system by virtual reality technology, the simulator for M-S manipulator using the computer graphics is developed. The parts are modelled in 3-D graphics, assembled, and kinematics are assigned. The inverse kinematics of the manipulator is defined, and the slave of manipulator is coupled with master by the manipulator's specification. Also, the virtual workcell is implemented in the graphical environment which is the same as the real environment. This graphic simulator of manipulator can be effectively used in designing of the maintenance processes for the hot cell equipment and enhance the reliability of the spent fuel management.

  • PDF

Design of a Controller for a Flexible Manipulator Using Fuzzy Theory and Genetic Algorithm (피지이론과 유전알고리츰의 합성에 의한 Flexible Manipulator 제어기 설계)

  • Lee, Kee-Seong;Cho, Hyun-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • A position control algorithm for a flexible manipulator is studied. The proposed algorithm is based on a fuzzy theory with a Steady State Genetic Algorithm(SSGA) and an Adaptive Genetic Algorithms(AGA). The proposed controller for a flexible manipulator have decreased 90.8%, 31.8%, 31.3% in error when compared with a conventional fuzzy controller, fuzzy controller using neural network, fuzzy controller using evolution strategies, respectively when the weight and the velocity of end-point are 0.8k9 and 1m/s, respectively.

Development and Experiment of a Micropositioning Parallel Manipulator (마이크로포지셔닝 병렬평행기구의 개발 및 실험)

  • Cha, Young-Youp;Yoon, Kwon-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.543-547
    • /
    • 2009
  • This paper describes the design, simulation, development, and experiment of a six degree-of-freedom micropositioning parallel manipulator. A movable stage was supported with six links, each of which extends with a dc-servo micropositioning actuator. In case of parallel manipulator, while the solution of the inverse kinematics is easily found by the vectors of the links which are composed of the joint coordinates in base and platform, but forward kinematic is not easily solved because of the nonlinearity and complexity of the parallel manipulator's kinematic output equation with the multi-solutions. The movable range of the prototype was ${\pm}25mm$ in the x- and y-directions and ${\pm}12.5mm$ in the z-direction. The minimum incremental motion of the prototype was $1{\mu}m$ in the x- and y-directions and $0.5{\mu}m$ in the z-direction. The repeatability of the prototype was ${\pm}2{\mu}m$ in the x- and y-directions and ${\pm}1{\mu}m$ in the z-direction. The motion performance was also evaluated by not only the computer simulation of CAD model but also the experiment using a capacitive sensor system.

An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

  • Kwon, Dong-Soo;Babcock, Scott-M.;Book, Wayne-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.599-606
    • /
    • 1992
  • A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator's end-effector exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-Unk flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  • PDF

Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network (인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Jung, Jong-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF