• Title/Summary/Keyword: M-K theory

Search Result 1,237, Processing Time 0.032 seconds

A Study on the Experiments and Prediction of Desulfurization Efficiency in Fluidized Bed Combustor (유동층연소로에서 탈황효율 실험 및 예측에 관한 연구)

  • 조상원;김영식
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.5
    • /
    • pp.93-101
    • /
    • 2002
  • We have studied that the prediction of desulfurization efficiency by limestone in fluidized-bed coal combustor. The results were presented as follows : Firstly, the bed temperature had a great deal of effect on the desulfurization and the optimum temperature of limestone was 85$0^{\circ}C$~90$0^{\circ}C$. Secondly, as the velocity and temperature increased, $K_{s}$, K and the desulfurization efficiency increased. So, $k_{s}$, $k_{d}$ highly depended on the air velocity and bed temperature, and $k_{s}$, $k_{d}$ were 82.53 mm/sec, 0.0041/sec at 0.2 m/sec, 85$0^{\circ}C$, $k_{s}$, $k_{d}$ were 125.62 mm/sec. 0.00532/sec at 0.3 m/sec, 80$0^{\circ}C$ respectively. And $k_{s}$, $k_{d}$ were 143.78 mm/sec, 0.00568/sec at 0.3 m/sec, 85$0^{\circ}C$. Thirdly, as a result of desulfurization modeling, there was good agreement between theory and experiments as anthracite fraction increased. At 3.0 of optimum Ca/S molar ratio, there was very good agreement between theory and experiments.riments.riments.s.

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.

The measurement for contactless eddy-current conductivity on Si wafer (와전류(eddy-current)방법에 의한 비접촉 전기비저항 측정기술 개발)

  • Park, Jin-Sueb;Ryu, Kwon-Sang;Ryu, Je-Cheon;Yu, Kwang-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.991-993
    • /
    • 1999
  • The method of measurement for contactless eddy-current conductivity using magnetic dipole field theory was suggested by M.C Chen[1], which calculate the eddy-current caused by exciting coil with Faraday's induction law. In this work, we have developed the apparatus for contactless measurement of conductivity or resistivity with the dipole field theory. The resistivity can be measured from several to a dozen $m{\Omega}{\cdot}cm$ range within maximum 30% error. At the high resistivity range above $100{\Omega}{\cdot}cm$, the standard deviation of measurement was very large as the induced voltage of sensing coil is small so it was difficult to measure the value precisely.

  • PDF

Formulation of forming limit diagram based on strain-rate potential (소성 변형률 포텐셜에 기초한 성형 한계도의 정식화)

  • Kim D.;Chung K.;Kim K. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.156-159
    • /
    • 2004
  • Most formulations for a forming limit diagram (FLD) have been based on yield stress potentials defined in the stress field. Nevertheless, there are formulations where potentials defined in the stain-rate field are especially convenient to formulate the rigid plastic material. Based on a strain-rate potential proposed for materials exhibiting planar anisotropic, the formulations for the forming limit diagram has been developed applying M-K theory. As verification example, the formulation is applied for anisotropic AA5182-O sheet. The good verification results show that the formulation for the forming limit diagram has been successfully developed.

  • PDF

Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials

  • Ghannad, M.;Nejad, M. Zamani;Rahimi, G.H.;Sabouri, H.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.105-126
    • /
    • 2012
  • Based on the first-order shear deformation theory (FSDT), and the virtual work principle, an elastic analysis for axisymmetric clamped-clamped Pressurized thick truncated conical shells made of functionally graded materials have been performed. The governing equations are a system of nonhomogeneous ordinary differential equations with variable coefficients. Using the matched asymptotic method (MAM) of the perturbation theory, these equations could be converted into a system of algebraic equations with variable coefficients and two systems of differential equations with constant coefficients. For different FGM conical angles, displacements and stresses along the radius and length have been calculated and plotted.

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.

Comparative study of finite element analysis and generalized beam theory in prediction of lateral torsional buckling

  • Sharma, Shashi Kant;Kumar, K.V. Praveen;Akbar, M. Abdul;Rambabu, Dadi
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.59-73
    • /
    • 2022
  • In the construction industry, thin-walled frame elements with very slender open cross-sections and low torsional stiffness are often subjected to a complex loading condition where axial, bending, shear and torsional stresses are present simultaneously. Hence, these often fail in instability even before the yield capacity is reached. One of the most common instability conditions associated with thin-walled structures is Lateral Torsional Buckling (LTB). In this study, a first order Generalized Beam Theory (GBT) formulation and numerical analysis of cold-formed steel lipped channel beams (C80×40×10×1, C90×40×10×1, C100×40×10×1, C80×40×10×1.6, C90×40×10×1.6 and C100×40×10×1.6) subjected to uniform moment is carried out to predict pure Lateral Torsional Buckling (LTB). These results are compared with the Finite Element Analysis of the beams modelled with shell elements using ABAQUS and analytical results based on Euler's buckling formula. The mode wise deformed shape and modal participation factors are obtained for comparison of the responses along with the effect of varying the length of the beam from 2.5 m to 10 m. The deformed shapes of the beam for different modes and GBTUL plots are analyzed for comparative conclusions.

Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.279-298
    • /
    • 2018
  • Present investigation deals with the free vibration characteristics of nanoscale-beams resting on elastic Pasternak's foundation based on nonlocal strain-gradient theory and a higher order hyperbolic beam model which captures shear deformation effect without using any shear correction factor. The nanobeam is lying on two-parameters elastic foundation consist of lower spring layers as well as a shear layer. Nonlocal strain gradient theory takes into account two scale parameters for modeling the small size effects of nanostructures more accurately. Hamilton's principal is utilized to derive the governing equations of embedded strain gradient nanobeam and, after that, analytical solutions are provided for simply supported conditions to solve the governing equations. The obtained results are compared with those predicted by the previous articles available in literature. Finally, the impacts of nonlocal parameter, length scale parameter, slenderness ratio, elastic medium, on vibration frequencies of nanosize beams are all evaluated.

CALIBRATION OF STELLAR PARAMETERS OF 85 PEG SYSTEM

  • Bach, Kiehunn;Kim, Yong-Cheol;Demarque, Pierre
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • We have investigated the evolutionary status of 85 Peg within the framework of standard evolutionary theory. 85 Peg has been known to be a visual and spectroscopic binary system in the solar neighborhood. In spite of the accurate information of the total mass (${\sim}1.5M_{\odot}$) and the distance (${\sim}12pc$) from the HIPPARCOS parallax, it has been undetermined an individual mass, therefore the evolved status of the system. Moreover, the coupled uncertainties of chemical composition and age, make matters worse in predicting an evolutionary status of the system. Nevertheless, we computed the various possible models for 85 Peg, and then calibrated stellar parameters by adjusting to the recent observational data. Our modelling computation has included recently updated input physics and stellar theory such as opacity, equation of state, and chemical diffusion. Through a statistical assessment, we have derived a confident parameter set as the best solution which minimized $X^{2}$ within the observational error domain. Most of all, we found that 85 Peg is not a binary system but a triple system with an unseen companion 85 Peg $B_{b}\;{\sim}0.16M_{\odot}$. The aim of the present paper is (1) to provide a complete modelling of the stellar system based on the evolutionary theory, and (2) to constrain the physical dimensions such as mass, metallicity and age.