• Title/Summary/Keyword: M-파

Search Result 1,718, Processing Time 0.025 seconds

Evaluation of the kinematic positioning accuracy of the navigation terminal with terrestrial DMB-based DGPS service (지상파 DMB 기반 DGPS 서비스를 이용한 내비게이션 단말의 이동측위 정확도 평가)

  • Park, Hwang-Hun;Jo, Hak-Hyeon;Kim, Ji-Hye;Kim, Hye-In
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.348-350
    • /
    • 2012
  • 현재 국토해양부에서 전국을 대상으로 실시하고 있는 지상파 DMB 기반 DGPS 실험방송의 정확도를 PC기반 수신 시스템과 내비게이션 단말을 이용하여 평가하였다. 정확도 평가를 위한 지역은 인천 송도 신도시와 서울 반포지역으로, 두 지역에 측위 경로를 선정하여 이동측위를 실시하였으며 각각 GPS 단독측위와 DMB 기반 DGPS를 이용한 측위 결과를 비교하였다. 먼저 위치보정정보의 송수신을 위하여 개발된 PC 기반 수신 시스템을 이용한 정확도 평가 결과는 송도에서 GPS 단독측위의 경우 2.5m의 수평오차가 발생하였고, DMB 기반 DGPS는 1.5m의 수평오차가 발생하였다. 또한 반포지역에서는 GPS 단독에서 2.0m, DMB기반 DGPS에서는 0.8m 수평오차가 발생하였다. 앞서 PC 기반 수신 시스템을 통해 검증 된 알고리즘을 구현한 DMB 기반 DGPS 샘플 내비게이션 단말을 이용하여 동일한 방법으로 정확도를 평가하였고 본 논문에서 그 결과를 소개한다.

  • PDF

A source and phase identification study of the 10 December 2002 Cheolwon, Korea, earthquake of ML 3.6 (2002년 12월 10일 규모 3.6 철원지진의 진원요소 및 파상분석)

  • 김우한;박종찬;함인경;김성균;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.19-24
    • /
    • 2003
  • We analysed seismic phases recorded by the 10 December 2002 Cheolwon, Korea, earthquake of $M_{L}$ 3.6 and obtained source parameters such as hypocenter, origin time, earthquake magnitude. Velocity and acceleration records used in this study are from the KMA and KIGAM seismic networks. Due to the location of the epicenter in the north of the DMZ(Demilitarized Zone), direct Pg phases were recorded only at five stations in the area south of DMZ. Identification of refracted Pn phase as the first arrival is difficult in most stations. Therefore, the hypocenter determined by existing routine methods could be affected by a large error. In order to avoid the possibility of the problem, we employed a method of seismic phase analysis developed by Kim et al.. The direct, refracted, and reflected P and S phases were successfully identified using the method together with the travel time curve data. In order to improve the accuracy in determination of the hypocenter and origin time, we included PmP and SmS phases in the analysis in addition to the phases such as Pg, Pn, Sg and Sn. The epicenter, depth, and origin time of the Cheolwon earthquake determined based on data of 11 stations within 200km from the epicenter are $38.81^{\circ}$N, $127.22^{\circ}$E, 12.0km, and 7:42:51.4(local time), respectively. The average value of the local magnitude based on the Richter's definition from all the stations is 3.6 in $M_{L}$. This magnitude is smaller by 0.2 and 0.5 compared with magnitudes determined by KMA and KIGAM, respectively.

Weathering Characteristics of Rocks near Churyong Tunnel Site, Kyongbuk, using Geophysical and Geochemical Methods (경북 추령터널 부근 암석의 풍화특성에 관한 지구물리화학적 연구)

  • 서만철;김민규;최석원
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.269-281
    • /
    • 1994
  • Microscopic study and X-ray diffraction analysis were carried out to find out rock type, tock forming minerals; and weathering characteristics of rocks at the constructing site of the churyong Tunnel, Kyongju-Gun, Kyongbuk. Seismic velocity and compressional strength were measured to evaluate mechanical properties of rock. The rock of the study area is Jurassic tuff consisting of clay minerals, crystals of quartz and feldspar, fragments of volcanic rocks and shale. Fresh tuff has compressional strength of about $443kg/\textrm{cm}^2$ and seismic velocity of about 3680m/sec in average. It is classified as soft rock. Rock fragment within tuff is andesite and it has compressional strength of about $2500kg/\textrm{cm}^2$ and seismic velocity of about 4340m/sec in average. It is classified as hard rock. A good linear relationship is found between compressional streangth and seismic velocity in both laboratory sample and in-situ rocks. Laboratory samples has seismic velocities faster about 1.5km/sec than those in-situ rocks. It is interpreted that joints, fractures, and water content in the in-situ rocks result in decreas of seismic velocity. As Tuff has more than 50% of clay minerals in matrix and shale fragments, it absorbs water easily in atmospheric condition. Therefore, though the rock in the study area is medium hard rock before weathering, it is weathered very easily in the case of exposure to natural environment, comparing with other rock.

  • PDF

Dose-related Effect of Extracorporeal Shock Wave Therapy for Lateral Epicondylitis - Prospective Randomized Double Blind Comparative Study - (주관절 외상과염의 체외 충격파 시술에서 에너지량에 따른 치료 효과 - 전향적 무작위적 이중 맹검 대조군 연구 -)

  • Oh, Joo-Han;Yoon, Jong-Pil;Oh, Chung-Hee;Jo, Ki-Hyun;Gong, Hyun-Sik
    • Clinics in Shoulder and Elbow
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • Purpose: The aim of this study was to examine the dose-related effect of extracorporeal shock wave therapy (ESWT) for lateral epicondylitis. Materials and methods: Thirty patients with refractory lateral epicondylitis despite conservative treatment for 6 months were enrolled in this study. The patients were divided randomly into a low- and high-energy group. All patients were treated 3 times with ESWT with an interval of 1 week in a double blinded manner. The mean energy level in the low- and high-energy group was $0.12 mJ/mm^2$ and $0.24 mJ/mm^2$, respectively. The upper extremity functional scales and Mayo elbow scores were measured prospectively at the baseline, 1, 3 and 6 months after ESWT. Results: Significant clinical improvement was observed in both groups after ESWT. The high-energy group showed better pain improvement at 6 months after ESWT (p=0.019). The effect of ESWT was dominant between 1 and 6 months after ESWT than within 1 month. Conclusion: ESWT for lateral epicondylitis demonstrated showed good results regardless of the energy dose. However, a high-energy level was more effective in pain improvement after 6 months of treatment.

Prediction of Physical Properties and Shear Wave Velocity of the Ground Using the Flat TDR System (Flat TDR 시스템을 이용한 지반의 물리적 특성 및 전단파속도 예측)

  • Jeong, Chanwook;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.173-191
    • /
    • 2022
  • In this study, the shear wave velocity of the ground was measured using Flat TDR, and the precision analysis of the measured value and the verification of field applicability were performed. The shear wave velocity measurement value was derived in the field using the piezo-stack combined in the Flat TDR. analyzed. As a result of the experiment, the average value of the change in shear wave speed at the time of grout material injection was 10.15 m/s at the beginning of age, and the average value of the change in shear wave speed after the 7th to 14th days was 65.99 m/s, showing a tendency to increase with age. Also, it was found that dry density and shear wave speed increased as the water content increased on the dry side, and that the dry density and shear wave rate decreased as the water content increased on the wet side as the water content increased. The shear modulus value derived from the field test was confirmed to be a minimum of 17.36 MPa and a maximum of 28.13 MPa, confirming a measurement value similar to the reference value. Through this, it can be seen that the measured value of the shear modulus using Flat TDR is reliable data, and it can be determined that the compaction management of the site can be effectively managed in the future.

특정 주파수 모의신호 발생을 통한 수중음파의 전달손실 측정

  • 나영남
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.112-120
    • /
    • 1992
  • 수심 100m 이하 천해에서 저주파 대역 음파의 전달손실 양상을 규명하기 위해 한국 동해 남부해역 3개 정점에서 특정 주파수 모의신호 발생을 통한 전달손실을 측정하였다. 10개의 특정 주파수에 대해서 연속파(Continuous Wave)를 방생시킬 수 있는 저주파 음원기를 5 kts의 속도로 예인하고, 다시 육상으로 무선전송하여 각 센서에서의 수진준위를 정확하게 보정하였다. 음원으로부터 DIFAR 센서까지의 전달손실은 거리에 대한 Log 함수로 표시할 수 있었으며, 주파수별 전달손실을 비교, 분석한 결과 동해 남부해역에서의 최적 주파수는 800Hz 내외에서 존재하는 것으로 추정된다.

  • PDF

ITO, PR, 격벽 재료의 레이저 직접 미세가공

  • Lee, Cheon;Lee, Gyung-Chul;Ahn, Min-Young;Lee, Hong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.80-80
    • /
    • 1999
  • 플라즈마 디스플레이 패널(PDP)의 공정을 간단히 하기 위하여 포토레지스트, ITO, 격벽재료를 Ar+ laser(λ-514 nm, CW)와 Nd:YAG laser(λ=532, 266nm, pulse)로 직접 패터닝 하였다. 레이저에 의한 포토레지스트의 패턴결과, 아르곤 이온 레이저의 포토레지스트 가공의 반응 메카니즘은 레이저 빔의 열에 의한 시료 표면의 국부적인 온도상승에 의한 용융작용이며, 그 결과 식각 후 형성된 패턴의 단면 모양도 레이저빔의 profile과 같은 가우시안 형태를 나타낸다. Nd:YAG 레이저의 4고조파(532nm)를 이용한 경우 200$\mu\textrm{m}$/sce의 주사속도에서 포토레지스트를 패턴하기 위한 임계에너지(threshold energy fluence) 값은 25J/cm2이며, 약 40J/cm2의 에너지 밀도에서 하부기판의 손상이 발생하기 시작하였다. 글미 1은 Nd:YAG 레이저 4고조파를 이용하여 포토레지스트를 식각한 경우 SEM 표면사진(위)과 단차특정기에 의한 단면형상(아래)이다. ITO 막의 레이저에 의한 직접 패턴 결과, ITO 막은 레이저 펄스에 의한 급속 가열 및 증발에 의한 메커니즘으로 식각이 이루어지며, 레이저 파장에 따른 광흡수 정도의 차이에 의해 2고조파 (532nm)에서 ITO 막의 가공 품질이 4고조파(266nm)에 비해 우수하며 패턴의 폭도 출력에 따라 제어가 용이하였다. 그림 2는 Nd:YAG 레이저 2고조파를 이용하여 ITO를 식각한 경우 SEM표면 사진(위)과 단차측정기에 의한 단면형상(아래)이다. 격벽 재료의 레이저에 의한 직접 패턴 결과, Ar+ 레이저(514nm)는 출력 밀도 32NW/cm2에서 격벽을 유리 기판의 경계면까지 식각하였다. Nd:YAG 레이저(532nm)는 laser fluence가 6.5mJ/cm2에서 격벽을 식각하기 시작하였으며, 19.5J/cm2에서 유리기판의 rudraus(격벽 두께 130$\mu\textrm{m}$)까지 식각하였다.

  • PDF

Intracavity frequency doubling of a tunable Ti:Sapphire laser using a lithium triborate$(LiB_3O_5, LBO)$ crystal (Lithium Triborate$(LiB_3O_5, LBO)$ 결정을 이용한 파장가변 티타늄 사파이어 레이저의 내부공진기 진동수 배가)

  • 추한태;박차곤;김규욱
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.143-149
    • /
    • 2001
  • We performed the intracavity frequency-doubling of a tunable continuous-wave Ti:sapphire laser using a lithium triborate $(LiB_3O_5, LBO)$ crystal. For an efficient intracavity frequency-doubling, we measured the spectral and the angular bandwidth about the $\theta$-direction of LBO crystal. The measured values at a fundamental wavelength of 800 nm were 1.54 nm.cm and 3.8 mrad.cm, respectively. As a result of an intracavity frequency-doubling, we obtained the second-harmonic generation output power of 5.3 mW at 400 nm with the full width at half maximum(FWHM) of 0.089 nm from the fundamental output power of 185 mW at 800 nm. The frequency-doubled output was tuned from 397 nm to 403 nm.403 nm.

  • PDF

Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements (Microtremor 배열 (SPAC) 측정을 이용한 제4기 실트층의 S파 속도구조 추정)

  • Roberts James;Asten Michael
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • We have used the microtremor method, with arrays of up to 96 m diameter, to carry out non-invasive estimation of shear-wave velocity profiles to a depth of 30 to 50 m in unconsolidated Quaternary Yarra Delta sediments. Two silt units (Coode Island Silt, and Fishermans Bend Silt) dominate our interpretation; the method yields shear velocities for these units with precision of $5\%$, and differentiates between the former, softer unit ($V_s$=130 m/sec) and the latter, firmer unit ($V_s$=235 m/sec). Below these silts, the method resolves a firm unit correlating with known gravels ($V_s$ 500 to 650 m/sec). Using surface traverses with the single-station H/V spectral ratio method, we show that the variation in thickness of the softer silt can be mapped rapidly but only qualitatively. The complexity of the geological section requires that array methods be used when quantitative shear-wave velocity profiles are desired.

Validation on the Bodywave Magnitude Estimation of the 2017 DPRK's Nuclear Test by Source Scaling (지진원 상대비율 측정법을 이용한 2017년 북한 핵실험의 실체파 규모 검증)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.589-593
    • /
    • 2018
  • Democratic Peoples' Republic of Korea (DPRK) conducted the $6^{th}$ underground nuclear test at the Punggye-ri underground nuclear test site on September 27, 2017 12 hours 30 minutes of Korean local time. Comprehensive Nuclear-Test Ban Treaty Organization (CTBTO) under U.N. announced the body wave magnitude of the event was mb 6.1 while U.S. Geological Survey (USGS)'s calculation was mb 6.3. In this study, the differences of the magnitude estimates were investigated and verified. For this purpose, a source scaling between the $5^{th}$ and $6^{th}$ event, which's epicenters are 200 meters apart, was performed using seismic data sets from 30 broadband stations. The relative amplitude variations of the $6^{th}$ event compared to the $5^{th}$ event in the frequency domain was analyzed through the scaling. The increased amount of the bodywave magnitude $m_b$ for the $6^{th}$ event was calculated at 1 Hz, which was compared to those from USGS and CTBTO's calculations.